8 research outputs found

    Cooperative management and its effects on shade tree diversity, soil properties and ecosystem services of coffee plantations in western El Salvador

    Full text link
    We compared how management approaches affected shade tree diversity, soil properties, and provisioning and carbon sequestration ecosystem services in three shade coffee cooperatives. Collectively managed cooperatives utilized less diverse shade, and pruned coffee and shade trees more intensively, than individual farms. Soil properties showed significant differences among the cooperatives, with the following properties contributing to differentiation: N, pH, P, K, and Ca. Higher tree richness was associated with higher soil pH, CEC, Ca, and Mg, and lower K. Higher tree densities were associated with lower N, K, and organic matter. Although we found differences in the incidence of provisioning services (e.g., fruit), all plantations generated products other than coffee. No differences were observed between C-stocks. The history and institutional arrangements of cooperatives can influence management approaches, which affect ecosystem properties and services. Our study corroborates that interdisciplinary investigations are essential to understand the socio-ecological context of tropical shade coffee landscapes

    No-till farming systems for sustainable agriculture: an overview

    No full text
    No-till (NT) farming systems have revolutionized agriculture by improving erosion control, soil water storage, soil quality and, in many instances, yield and net farm income. The adoption of NT systems has increased at an exponential rate since the 1990s and they are now used on 12.5% of global croplands. However, while the development of NT systems has seen much success, there can be significant agronomic, economic and/or social challenges associated with their use that limit large scale worldwide adoption. In addition, where NT is not implemented as part of an integrated system that incorporates stubble retention and appropriate crop rotations to help manage weeds, diseases, pests and soil fertility, decreases in yield can be observed. A combination of research, education and good policy development to remove economic/institutional and social barriers to uptake are required to ensure the continued success of NT. In particular, the tailoring of NT farming systems according to individual locations and the introduction of some flexibility in approach to tillage management can provide an opportunity to manage some of the challenges of NT farming systems

    Impacts of conservation tillage on soil quality, including soil-borne crop diseases, with a focus on semi-arid grain cropping systems

    No full text
    corecore