19 research outputs found

    Formation of orogenic gold deposits by progressive movement of a fault-fracture mesh through the upper crustal brittle-ductile transition zone

    Get PDF
    Orogenic gold deposits are comprised of complex quartz vein arrays that form as a result of fluid flow along transcrustal fault zones in active orogenic belts. Mineral precipitation in these deposits occurs under variable pressure conditions, but a mechanism explaining how the pressure regimes evolve through time has not previously been proposed. Here we show that extensional quartz veins at the Garrcon deposit in the Abitibi greenstone belt of Canada preserve petrographic characteristics suggesting that the three recognized paragenetic stages formed within different pressure regimes. The first stage involved the growth of interlocking quartz grains competing for space in fractures held open by hydrothermal fluids at supralithostatic pressures. Subsequent fluid flow at fluctuating pressure conditions caused recrystallization of the vein quartz and the precipitation of sulfide minerals through wall-rock sulfidation, with some of the sulfide minerals containing microscopic gold. These pressure fluctuations between supralithostatic to near-hydrostatic conditions resulted in the post-entrapment modification of the fluid inclusion inventory of the quartz. Late fluid flow occurred at near-hydrostatic conditions and resulted in the formation of fluid inclusions that have not been affected by post-entrapment modification as pressure conditions never returned to supralithostatic conditions. This late fluid flow is interpreted to have formed the texturally late, coarse native gold that occurs along quartz grain boundaries and in open spaces. The systematic evolution of the pressure regimes in orogenic gold deposits such as Garrcon can be explained by relative movement of fault-fracture meshes across the base of the upper crustal brittle-ductile transition zone. We conclude that early vein quartz in orogenic deposits is precipitated at near-lithostatic conditions whereas the paragenetically late gold is introduced at distinctly lower pressure

    CD34 marks angiogenic tip cells in human vascular endothelial cell cultures

    Get PDF
    The functional shift of quiescent endothelial cells into tip cells that migrate and stalk cells that proliferate is a key event during sprouting angiogenesis. We previously showed that the sialomucin CD34 is expressed in a small subset of cultured endothelial cells and that these cells extend filopodia: a hallmark of tip cells in vivo. In the present study, we characterized endothelial cells expressing CD34 in endothelial monolayers in vitro. We found that CD34-positive human umbilical vein endothelial cells show low proliferation activity and increased mRNA expression of all known tip cell markers, as compared to CD34-negative cells. Genome-wide mRNA profiling analysis of CD34-positive endothelial cells demonstrated enrichment for biological functions related to angiogenesis and migration, whereas CD34-negative cells were enriched for functions related to proliferation. In addition, we found an increase or decrease of CD34-positive cells in vitro upon exposure to stimuli that enhance or limit the number of tip cells in vivo, respectively. Our findings suggest cells with virtually all known properties of tip cells are present in vascular endothelial cell cultures and that they can be isolated based on expression of CD34. This novel strategy may open alternative avenues for future studies of molecular processes and functions in tip cells in angiogenesis

    The Geometry of Surfaces in Euclidean Spaces

    No full text

    Local Theory of Bendings of Surfaces

    No full text
    corecore