13 research outputs found

    Surface decontamination treatments for improving the safety of meat and poultry

    No full text
    The microbiological safety of raw beef and poultry products continue to be one of the major concerns of the meat industry. In 2011, an estimated 9.4 million illnesses, 55,961 hospitalizations, and 1,351 deaths were attributed to known foodborne pathogens in the USA including Norovirus caused the most illnesses; nontyphoidal Salmonella spp., norovirus, Campylobacter spp., and Toxoplasma gondii caused the most hospitalizations; and nontyphoidal Salmonella spp., T. gondii, Listeriamonocytogenes, and norovirus caused the most deaths [Scallan et al. (Emerg Infect Dis 17:7–15, 2011)]. Several factors influence the incidence of pathogens in the meat and poultry food supply, some of the more important factors are livestock production practices that may inadvertently foster pathogen contamination; the emergence of “new” and antibiotic-resistant pathogens in the environment; increased manipulation and handling and accelerated processing of carcasses and raw materials; modification of traditional processing practices and greater complexity of manufacturing procedures and equipment; a more complex distribution and food preparation system that increases the risk of foodborne disease; more discriminate and selective pathogen detection methods to improve confirmation and trace-back of contaminated product; and consumer habits that represent inappropriate food handling and preparation practices [Keeton and Eddy (Preharvest and postharvest food safety—contemporary issues and future directions. Blackwell, Ames, 2004)]. The surface decontamination treatments of meat and poultry could improve the safety of these products and help to reduce foodborne illnesses. Details of some surface decontamination treatments of raw meat and poultry are discussed in this review. © 2014, Springer Science+Business Media New York

    Functional Analysis and Fine Mapping of the 9p22.2 Ovarian Cancer Susceptibility Locus

    No full text
    Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the mechanisms underlying these associations remain elusive. In this study, we conducted a two-pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a scaffold/matrix attachment region were characterized and, through physical DNA interactions, BNC2 was established as the most likely target gene. We determined the consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-seq regions, and validated a set of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer

    Small Molecule Modulators In Epigenetics

    No full text

    The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease

    No full text
    Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases
    corecore