811 research outputs found
Grain refinement of DC cast magnesium alloys with intensive melt shearing
A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process, has been developed for the production of high quality billets/slabs of light alloys by application of intensive melt shearing through a rotor-stator high shear device during the DC casting process. The rotor-stator high shear device provides intensive melt shearing to disperse the naturally occurring oxide films, and other inclusions, while creating a microscopic flow pattern to homogenize the temperature and composition fields in the sump. In this paper, we report the grain refining effect of intensive melt shearing in the MC-DC casting processing. Experimental results on DC casting of Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce magnesium alloy billets with significantly refined microstructure. Such grain refinement in the MC-DC casting process can be attributed to enhanced heterogeneous nucleation by dispersed naturally occurring oxide particles, increased nuclei survival rate in uniform temperature and compositional fields in the sump, and potential contribution from dendrite arm fragmentation
Characterization of Fish IRF3 as an IFN-Inducible Protein Reveals Evolving Regulation of IFN Response in Vertebrates
In mammals, IFN regulatory factor (IRF) 3 is a critical player in modulating transcription of type I IFN and IFN-stimulated genes (ISGs). In this study, we describe the roles of crucian carp (Carassius auratus L.) IRF3 in activating fish IFN and ISGs. Fish IRF3 exhibits a large sequence divergence from mammalian orthologs. Whereas mammalian IRF3 is constitutively expressed, fish IRF3 protein is significantly upregulated by IFN, poly-IC, and other stimuli known as IFN inducers in mammals. The IFN-inducible property of fish IRF3 is consistent with the comparative analysis of 5' flanking regulatory region of vertebrate IRF3 genes, which reveals the presence of typical IFN-stimulated response elements in fish and amphibians, but an absence in tetrapods. Furthermore, either IFN or poly-IC induces phosphorylation and cytoplasmic-to-nuclear translocation of IRF3, which seems essential for its function in that phosphomimic active IRF3 exhibits stronger transactivation than wild type IRF3. Finally, overexpression of fish IRF3 activates production of IFN that in turn triggers ISG transcription through Stat1 pathway, whereas transfection of dominant negative mutant IRF3-DN abrogates poly-IC induction of ISGs, probably owing to blockade of IFN production. Therefore, regulation of IFN response by vertebrate IRF3 is another ancient trait. These data provide evidence of the evolving function of vertebrate IRF3 on regulating IFN response. The Journal of Immunology, 2010, 185: 7573-7582
Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene
The flat bands in bilayer graphene(BLG) are sensitive to electric fields
E\bot directed between the layers, and magnify the electron-electron
interaction effects, thus making BLG an attractive platform for new
two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the
possibility of a variety of interesting broken symmetry states, some
characterized by spontaneous mass gaps, when the electron-density is at the
carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in
bilayer graphene are analogous[17,18] to the masses generated by broken
symmetries in particle physics and give rise to large momentum-space Berry
curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though
recent experiments[20-23] have provided convincing evidence of strong
electronic correlations near the CNP in BLG, the presence of gaps is difficult
to establish because of the lack of direct spectroscopic measurements. Here we
present transport measurements in ultra-clean double-gated BLG, using
source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the
CNP. The gap can be closed by an electric field E\bot \sim13 mV/nm but
increases monotonically with a magnetic field B, with an apparent particle-hole
asymmetry above the gap, thus providing the first mapping of the ground states
in BLG.Comment: 4 figure
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
Gig1, a novel antiviral effector involved in fish interferon response
Vertebrate interferon (IFN) response defenses against viral infection through the induction of hundreds of IFN-stimulated genes (ISGs). Most ISGs are conserved across vertebrates; however, little is known about the species-specific ISGs. In this study, we reported that grass carp reovirus (GCRV)-induced gene 1 (Gig1), previously screened as a virus-induced gene from UV-inactivated GCRV-infected crucian carp (Carassius auratus) blastulae embryonic (CAB) cells, was a typical fish ISG, which was significantly induced by intracellular poly(I:C) through retinoic acid-inducible gene I (RIG-I)-like receptors-triggered IFN signaling pathway. Transient or stable overexpression of Gig1 prevented GCRV replication efficiently in cultured fish cells. Strikingly, Gig1 homologs were found exclusively in fish species forming a novel gene family. These results illustrate that there exists a Gig1 gene family unique to fish species and the founding gene mediates a novel fish IFN antiviral pathway. (C) 2013 Elsevier Inc. All rights reserved.Vertebrate interferon (IFN) response defenses against viral infection through the induction of hundreds of IFN-stimulated genes (ISGs). Most ISGs are conserved across vertebrates; however, little is known about the species-specific ISGs. In this study, we reported that grass carp reovirus (GCRV)-induced gene 1 (Gig1), previously screened as a virus-induced gene from UV-inactivated GCRV-infected crucian carp (Carassius auratus) blastulae embryonic (CAB) cells, was a typical fish ISG, which was significantly induced by intracellular poly(I:C) through retinoic acid-inducible gene I (RIG-I)-like receptors-triggered IFN signaling pathway. Transient or stable overexpression of Gig1 prevented GCRV replication efficiently in cultured fish cells. Strikingly, Gig1 homologs were found exclusively in fish species forming a novel gene family. These results illustrate that there exists a Gig1 gene family unique to fish species and the founding gene mediates a novel fish IFN antiviral pathway. (C) 2013 Elsevier Inc. All rights reserved
Three-dimensional finite element analyses on the transtibial residual limb and its prosthetic socket
2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Human foot three-dimensional finite element of modeling and its biomechanical applications
2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Quantitative comparison of plantar foot shapes under different weight-bearing conditions
2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
- …
