3,787 research outputs found

    Specific heat study of spin-structural change in pyrochlore Nd2_2Mo2_2O7_7

    Full text link
    By measurements of specific heat, we have investigated the magnetic field (HH) induced spin-structural change in Nd2_2Mo2_2O7_7 that shows spin-chirality-related magneto-transport phenomena. A broad peak around 2 K caused by the ordering of 2-in 2-out structure of the Nd moments at zero HH shifts to the lower temperature (TT) up to around 3 T and then to the higher TT above around 3 T with increasing HH for all the direction of HH. This is due to the crossover from antiferromagnetic to ferromagnetic arrangement between the Nd and Mo moments. While the peak TT increases monotonically above 3 T for HH//[100], another peak emerges around 0.9 K at 12 T for HH//[111], which is ascribed to the ordering of 3-in 1-out structure. For HH//[110], a spike like peak is observed at around 3 T, which is caused perhaps by some spin flip transition.Comment: 5 pages, 4 figure

    Low-temperature magnetotransport of narrow-gap semiconductor FeSb2

    Full text link
    We present a study of the magnetoresistance and Hall effect in the narrow-gap semiconductor FeSb2 at low temperatures. Both the electrical and Hall resistivities show unusual magnetic field dependence in the low-temperature range where a large Seebeck coefficient was observed. By applying a two-carrier model, we find that the carrier concentration decreases from 1 down to 10^-4 ppm/unit cell and the mobility increases from 2000 to 28000 cm2/Vs with decreasing temperature from 30 down to 4 K. At lower temperatures, the magnetoresistive behavior drastically changes and a negative magnetoresistance is observed at 3 K. These low-temperature behaviors are reminiscent of the low-temperature magnetotransport observed in doped semiconductors such as As-doped Ge, which is well described by a weak-localization picture. We argue a detailed electronic structure in FeSb2 inferred from our observations.Comment: 5 pages, 5 figures, to be published in Phys. Rev.

    Exotic mesons with hidden charm and bottom near thresholds

    Full text link
    We study heavy hadron spectroscopy near heavy meson thresholds. We employ heavy pseudoscalar meson P and heavy vector meson P* as effective degrees of freedom and consider meson exchange potentials between them. All possible composite states which can be constructed from the P and P* mesons are studied up to the total angular momentum J <= 2. We consider, as exotic states, isosinglet states with exotic J^{PC} quantum numbers and isotriplet states. We solve numerically the Schr\"odinger equation with channel-couplings for each state. We found B(*)barB(*) molecule states for I^G(J^{PC}) = 1^+(1^{+-}) correspond to the masses of twin resonances Zb(10610) and Zb(10650). We predict several possible B(*)barB(*) bound and/or resonant states in other channels. On the other hand, there are no B(*)barB(*) bound and/or resonant states whose quantum numbers are exotic.Comment: 10 pages, 1 figure, to appear in the proceedings of The 5th International Workshop on Charm Physics (Charm 2012

    Generalized hidden symmetries and the Kerr-Sen black hole

    Get PDF
    We elaborate on basic properties of generalized Killing-Yano tensors which naturally extend Killing-Yano symmetry in the presence of skew-symmetric torsion. In particular, we discuss their relationship to Killing tensors and the separability of various field equations. We further demonstrate that the Kerr-Sen black hole spacetime of heterotic string theory, as well as its generalization to all dimensions, possesses a generalized closed conformal Killing-Yano 2-form with respect to a torsion identified with the 3-form occuring naturally in the theory. Such a 2-form is responsible for complete integrability of geodesic motion as well as for separability of the scalar and Dirac equations in these spacetimes.Comment: 33 pages, no figure

    Thermal conductivity of quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

    Get PDF
    We report low-temperature thermal conductivity κ\kappa of pyrochlore Yb2_2Ti2_2O7_7, which contains frustrated spin-ice correlations with significant quantum fluctuations. In the disordered spin-liquid regime, κ(H)\kappa(H) exhibits a nonmonotonic magnetic field dependence, which is well explained by the strong spin-phonon scattering and quantum monopole excitations. We show that the excitation energy of quantum monopoles is strongly suppressed from that of dispersionless classical monopoles. Moreover, in stark contrast to the diffusive classical monopoles, the quantum monopoles have a very long mean free path. We infer that the quantum monopole is a novel heavy particle, presumably boson, which is highly mobile in a three-dimensional spin liquid.Comment: 8 pages, 9 figure

    Full O(α)\mathcal{O}(\alpha) electroweak radiative corrections to e+ettˉγe^+e^- \rightarrow t \bar{t} \gamma with GRACE-Loop

    Full text link
    We present the full O(α)\mathcal{O}(\alpha) electroweak radiative corrections to the process e+ettˉγe^+e^- \rightarrow t \bar{t} \gamma at the International Linear Collider (ILC). The computation is performed with the help of the GRACE-Loop system. We present the total cross-section and the top quark forward-backward asymmetry (AFBA_{FB}) as a function of the center-of-mass energy and compare them with the process e+ettˉe^+e^- \rightarrow t \bar{t}. We find that the value of AFBA_{FB} in ttˉγt \bar{t} \gamma production is larger than AFBA_{FB} in ttˉt\bar{t} production. It is an important result for the measurement of the top quark forward-backward asymmetry at the ILC. Applying a structure function method, we also subtract the QED correction to gain the genuine weak correction in both the α\alpha scheme and the GμG_{\mu} scheme (δWGμ\delta_{W}^{G_{\mu}}). We obtain numerical values for δWGμ\delta_{W}^{G_{\mu}} which are changing from 2% to -24% when we vary the center-of-mass energy from 360 GeV to 1 TeV.Comment: 13 pages, 9 figure
    corecore