45 research outputs found

    Risk of hepatitis B virus reactivation and its effect on survival in advanced hepatocellular carcinoma patients treated with hepatic arterial infusion chemotherapy and lenvatinib plus programmed death receptor-1 inhibitors

    Get PDF
    BackgroundHepatitis B virus (HBV) reactivation is a common complication in hepatocellular carcinoma (HCC) patients treated with chemotherapy or immunotherapy. This study aimed to evaluate the risk of HBV reactivation and its effect on survival in HCC patients treated with HAIC and lenvatinib plus PD1s.MethodsWe retrospectively collected the data of 213 HBV-related HCC patients who underwent HAIC and lenvatinib plus PD1s treatment between June 2019 to June 2022 at Sun Yat-sen University, China. The primary outcome was the risk of HBV reactivation. The secondary outcomes were overall survival (OS), progression−free survival (PFS), and treatment−related adverse events.ResultsSixteen patients (7.5%) occurred HBV reactivation in our study. The incidence of HBV reactivation was 5% in patients with antiviral prophylaxis and 21.9% in patients without antiviral prophylaxis, respectively. The logistic regression model indicated that for HBV reactivation, lack of antiviral prophylaxis (P=0.003) and tumor diameter (P=0.036) were independent risk factors. The OS and PFS were significantly shorter in the HBV reactivation group than the non-reactivation group (P=0.0023 and P=0.00073, respectively). The number of AEs was more in HBV reactivation group than the non-reactivation group, especially hepatic AEs.ConclusionHBV reactivation may occur in HCC patients treated with HAIC and lenvatinib plus PD1s. Patients with HBV reactivation had shorter survival time compared with non-reactivation. Therefore, HBV-related HCC patients should undergo antiviral therapy and HBV-DNA monitoring before and during the combination treatment

    Electrochemically Fabricated Surface-Mesostructured CuNi Bimetallic Catalysts for Hydrogen Production in Alkaline Media

    Get PDF
    Ni-based bimetallic films with 20 at.% and 45 at.% Cu and mesostructured surfaces were prepared by electrodeposition from an aqueous solution containing micelles of P123 triblock copolymer serving as a structure-directing agent. The pH value of the electrolytic solution had a key effect on both the resulting Cu/Ni ratio and the surface topology. The catalytic activity of the CuNi films toward hydrogen evolution reaction was investigated by cyclic voltammetry (CV) in 1 M KOH electrolyte at room temperature. The CuNi film showed the highest activity (even higher than that of a non-mesostructured pure Ni film), which was attributed to the Ni content at the utmost surface, as demonstrated by CV studies, as well as the presence of a highly corrugated surface

    Water-Borne Perovskite Quantum Dot-Loaded, Polystyrene Latex Ink

    Get PDF
    Highly lipophilic nanocrystals (NCs) of cesium lead halides were successfully embedded in polystyrene (PS) particles by deliberately controlling the swelling of the PS particles in the mixtures of good and bad organic solvents. The resulting composite particles were readily transferred into water via simple stepwise solvent exchange, which yielded water-borne perovskite NC-based inks with outstanding structural and chemical stability in aqueous media. Minimal change in the photoluminescence (PL) of the NCs loaded in the PS particles was visible after 1 month of incubation of the composite particles in water in a broad pH range from 1 to 14, which could otherwise be hardly realized. Loading into the PS particles also made the NCs highly stable against polar organic solvents, such as ethanol, intense light irradiation, and heat. The NC PL intensity slightly changed after the composite particles were heated at 75°C and under irradiation of strong blue light (@365 nm) for 1 h. Furthermore, the PS matrices could effectively inhibit the exchange of halide anions between two differently sized perovskite NCs loaded therein, thereby offering a considerable technical advantage in the application of multiple perovskite NCs for multicolor display in the future

    Effect of probiotic intervention on intestinal flora and immune status in patients with secondary infections to HBV-related acute-on-chronic liver failure

    No full text
    Objective To assess the effect of probiotic intervention on intestinal flora and immune status in patients with secondary infections to HBV-related acute-on-chronic liver failure (HBV-ACLF). Methods A total of 101 patients with HBV-ACLF treated in our hospital between January, 2017 and June, 2018 were enrolled in this study, including 56 without secondary infections (HBV-ACLF group) and 45 with secondary infections to HBV-ACLF (secondary infection group), with 67 healthy participants as controls. All the patients with HBV-ACLF were treated with bifidobacterium quadruple live bacteria tablets in addition to the routine treatments for 1 month. From all the participants, fecal specimens were collected before and after the treatment to analyze the changes in Lactobacillus, Bifidobacterium, Escherichia coli, Enterococcus, yeast, Staphylococcus, Bacteroides and Streptococcus mutans; peripheral blood samples were also obtained for testing the serum levels of immunoglobulin A (IgA), IgG and IgM using ELISA; the changes in T lymphocyte subsets CD3+, CD4+ and CD8+ were detected using immunofluorescence flow cytometry, and the levels of C-reactive protein (CRP), tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6) and interleukin-8(IL-8) were determined using ELISA. Results Compared with the control group, the patients with HBV-ACLF in both groups before the treatment showed significantly reduced abundance of intestinal Lactobacilli and Bifidobacteria and increased abundance of Escherichia coli, Enterococcus, yeast, Staphylococcus, Bacteroides, and Streptococcus pneumoniae (P 0.05). Conclusion The patients with secondary infections to HBV-ACLF have abnormal changes in intestinal flora and immune status, which can be improved by probiotic intervention

    Reducing Helicopter Vibration Loads by Individual Blade Control with Genetic Algorithm

    No full text
    A rotor that can realize individual blade pitch control was designed. This paper focuses on finding the trend of helicopter vibration loads after applying multiple high-order harmonic control. The Glauert inflow model was introduced to calculate the induced velocity of rotor blades in a rotor disk plane, and the Leishman Beddoes (L-B) unsteady dynamic model was employed to calculate the aerodynamic forces of each section of a rotor blade. It was found that the influence of each high-order harmonic control on individual blade vibration load reduction is similar in different advanced ratios. After these calculations, the genetic algorithm was used to calculate the best combination of amplitude and phase of the higher order harmonic under a specific flight state. Under the effect of high harmonic input, the vibration loads of the hub could be reduced by about 65%. These results can be theoretically applied to design control law to reduce helicopter vibration loads

    Osthole improves collagen-induced arthritis in a rat model through inhibiting inflammation and cellular stress

    No full text
    Abstract Background Osthole is a natural product that has multiple bioactive functions and has been reported to exert potent immunosuppressive effects. However, the therapeutic effect of osthole on arthritis has not been explored. In the present study, a collagen-induced arthritis rat model, IL-1β-stimulated SW982 cells, and RA-like fibroblast-like synoviocytes (FLS) were employed to investigate the effect and possible mechanism of osthole on arthritis in vivo and in vitro. Results 20 and 40 mg/kg osthole significantly alleviated collagen-induced arthritic symptoms based on histopathology and clinical arthritis scores, and improved erosion using HE staining. 20 and 40 mg/kg osthole decreased the level of IL-1β, TNF-α and IL-6 in rats and ameliorated oxidative stress in serum evaluated using ELISA kits. In addition, treatment with 50 and 100 μM osthole for 48 h inhibited 10 ng/ml IL-1β-stimulated proliferation and migration of SW982, and significantly inhibited the expression of matrix metalloproteinases, such as MMP-1, MMP-3 and MMP-13, as detected by western blot. 50 and 100 μM osthole also blocked the generation of IL-6 and TNF-α in IL-1β-stimulated SW982 cells. The NF-κB and MAPK pathways were also inhibited by osthole in IL-1β-treated SW982 cells. Conclusion These results collectively demonstrated that osthole improves collagen-induced arthritis in a rat model and IL-1β-treated SW982 cells through inhibiting inflammation and cellular stress in vivo and in vitro, and osthole might be a promising therapeutic agent for RA

    Microstructure evolution, mechanical property response and strengthening mechanism induced by compositional effects in Al–6 Mg alloys

    No full text
    Based on the compositional design concept, an Al–6 Mg–0.8Mn (–0.2Sc) alloy with a good combination of strength and ductility was obtained by hot extrusion deformation with a large extrusion ratio. The microstructure evolution and mechanical property of an Al–6 Mg alloy with adding Mn and/or Sc elements were investigated. The results showed that the addition of Sc element resulted in the grain refinement and promoted the precipitation of nano-sized Al6Mn phases in the Al–6 Mg–0.8Mn–0.2Sc alloy. After hot extrusion, the number of nano-sized Al6Mn phases decreased with the morphology transforming into the rhomboidal/plate-like shape. The combined effect of nano-sized Al6Mn phases and Al3Sc dispersoids offered a strong pinning effect on both grain boundaries and dislocations, leading to a significant refinement for recrystallized grains. Strengthening mechanism analysis indicated that the grain boundary and dislocation strengthening play important roles in enhancing the yield strength of the alloy. In addition, the uniform distribution of solid solution Mg atoms and high recrystallized fraction contributed to the high ductility of the extruded alloy. The aim of this work is to provide a strategy to acquire Al–Mg alloys with excellent mechanical performance

    A Calculation Model for Cooling Rate of Aluminum Alloy Melts during Continuous Rheo-Extrusion

    No full text
    The melt temperature of aluminum alloys plays a significant role in determining the microstructure characteristic during continuous rheo-extrusion. However, it is difficult to measure the actual melt temperature in the roll-shoe gap. In this work, based on the basic theory of heat transfer, a calculation model for heat transfer coefficient of cooling water/roll interface and melt/roll interface is established. In addition, the relationship between the temperature at the melt/roll interface and the velocity of cooling water is investigated. Combined with the CALPHAD calculation, the melt temperature during solidification in the continuous rheo-extrusion process is calculated. Using this model, the cooling rate of an Al–6Mg (wt.%) alloy melt prepared by continuous rheo-extrusion is estimated to be 10.3 K/s. This model used to determine the melt parameters during solidification provides a reference for optimizing the production process of continuous rheo-extrusion technology
    corecore