599 research outputs found
Person Re-identification with Correspondence Structure Learning
This paper addresses the problem of handling spatial misalignments due to
camera-view changes or human-pose variations in person re-identification. We
first introduce a boosting-based approach to learn a correspondence structure
which indicates the patch-wise matching probabilities between images from a
target camera pair. The learned correspondence structure can not only capture
the spatial correspondence pattern between cameras but also handle the
viewpoint or human-pose variation in individual images. We further introduce a
global-based matching process. It integrates a global matching constraint over
the learned correspondence structure to exclude cross-view misalignments during
the image patch matching process, hence achieving a more reliable matching
score between images. Experimental results on various datasets demonstrate the
effectiveness of our approach
Learning Correspondence Structures for Person Re-identification
This paper addresses the problem of handling spatial misalignments due to
camera-view changes or human-pose variations in person re-identification. We
first introduce a boosting-based approach to learn a correspondence structure
which indicates the patch-wise matching probabilities between images from a
target camera pair. The learned correspondence structure can not only capture
the spatial correspondence pattern between cameras but also handle the
viewpoint or human-pose variation in individual images. We further introduce a
global constraint-based matching process. It integrates a global matching
constraint over the learned correspondence structure to exclude cross-view
misalignments during the image patch matching process, hence achieving a more
reliable matching score between images. Finally, we also extend our approach by
introducing a multi-structure scheme, which learns a set of local
correspondence structures to capture the spatial correspondence sub-patterns
between a camera pair, so as to handle the spatial misalignments between
individual images in a more precise way. Experimental results on various
datasets demonstrate the effectiveness of our approach.Comment: IEEE Trans. Image Processing, vol. 26, no. 5, pp. 2438-2453, 2017.
The project page for this paper is available at
http://min.sjtu.edu.cn/lwydemo/personReID.htm arXiv admin note: text overlap
with arXiv:1504.0624
Research on “Promoting teaching by competition” in the construction of electronic majors in local colleges and universities
This paper aims at training practical electronic undergraduate talents in local ordinary undergraduate colleges and
universities. Through analyzing the current situation and common construction methods of electronic major construction, this paper proposes
to integrate electronic design competition into teaching design. In the practice process, the competition training and daily teaching depth
integration, to achieve the purpose of promoting teaching by competition, and at the same time in practice summed up several integration
models, the common planning method of promoting teaching by competition is put forward
Tracing blastomere fate choices of early embryos in single cell culture
Blastomeres of early vertebrate embryos undergo numerous fate choices for division, motility, pluripotency maintenance and restriction culminating in various cell lineages. Tracing blastomere fate choices at the single cell level in vitro has not been possible because of the inability to isolate and cultivate early blastomeres as single cells. Here we report the establishment of single cell culture system in the fish medaka, enabling the isolation and cultivation of individual blastomeres from 16- to 64-cell embryos for fate tracing at the single cell level in vitro. Interestingly, these blastomeres immediately upon isolation exhibit motility, lose synchronous divisions and even stop dividing in ≥50% cases, suggesting that the widely accepted nucleocytoplasmic ratio controlling synchronous divisions in entire embryos does not operate on individual blastomeres. We even observed abortive division, endomitosis and cell fusion. Strikingly, ~5% of blastomeres in single cell culture generated extraembryonic yolk syncytial cells, embryonic stem cells and neural crest-derived pigment cells with timings mimicking their appearance in embryos. We revealed the maternal inheritance of key lineage regulators and their differential expression in cleavage embryos. Therefore, medaka blastomeres possess the accessibility for single cell culture, previously unidentified heterogeneity in motility, division, gene expression and intrinsic ability to generate major extraembryonic and embryonic lineages without positioning cues. Our data demonstrate the fidelity and potential of the single cell culture system for tracking blastomere fate decisions under defined conditions in vitro
A Dual-Fluorescent Composite of Graphene Oxide and Poly(3-Hexylthiophene) Enables the Ratiometric Detection of Amines
A composite prepared by grafting a conjugated polymer, poly(3-hexylthiophene) (P3HT), to the surface of graphene oxide was shown to result in a dual-fluorescent material with tunable photoluminescent properties. Capitalizing on these unique features, a new class of graphene-based sensors that enables the ratiometric fluorescence detection of amine-based pollutants was developed. Moreover, through a detailed spectroscopic study, the origin of the optical properties of the aforementioned composite was studied and was found to be due to electronic decoupling of the conjugated polymer from the GO. The methodology described herein effectively overcomes a long-standing challenge that has prevented graphene based composites from finding utility in sensing and related applications.Meng, Dongli, Shaojun Yang, Dianming Sun, Yi Zeng, Jinhua Sun, Yi Li, Shouke Yan, Yong Huang, Christopher W. Bielawski, and Jianxin Geng. "A dual-fluorescent composite of graphene oxide and poly (3-hexylthiophene) enables the ratiometric detection of amines." Chemical Science 5, no. 8 (Apr., 2014): 3130-3134.Chemistr
miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation.
Oxidative stress impairs follicular development by inducing granulosa cell (GC) apoptosis, which involves enhancement of the transcriptional activity of the pro-apoptotic factor Forkhead box O1 (FoxO1). However, the mechanism by which oxidative stress promotes FoxO1 activity is still unclear. Here, we found that miR-181a was upregulated in hydrogen peroxide (
- …