63 research outputs found

    Identification of discharge regimes of cyclone dipleg-trickle valve system based on pressure fluctuation profiles

    Get PDF
    An experiment was conducted on the Φ150mm×5000mmcyclone dipleg-trickle valve setup, which was focused on analyzing the discharge characteristics of trickle valve of cyclone dipleg by means of the dynamic pressure measurement. The effects of two operating parameters, negative pressure drop (0~11kPa) and solids flux rate (0~50 kg/m2.s), on the discharge patterns were investigated. The experimental results show that there are two kinds of discharge patterns in the trickle valve. One is continuous trickling discharge at low negative pressure drop and high solids flux rate, which is characterized by valve plate opening continuously, and the measured pressure with high frequency and low amplitude. The other is intermittent periodic dumping discharge at high negative pressure drop and low solids flux rate, which has the properties of valve plate opening interval, and the measured pressure with low frequency and high amplitude. The two discharge patterns could transform each other as varying the negative pressure drop or solids flux rate. The discharge regime map was proposed based on the experimental data, which is related to the negative. Please click Additional Files below to see the full abstract

    Affective Affordance of Message Balloon Animations: An Early Exploration of AniBalloons

    Full text link
    We introduce the preliminary exploration of AniBalloons, a novel form of chat balloon animations aimed at enriching nonverbal affective expression in text-based communications. AniBalloons were designed using extracted motion patterns from affective animations and mapped to six commonly communicated emotions. An evaluation study with 40 participants assessed their effectiveness in conveying intended emotions and their perceived emotional properties. The results showed that 80% of the animations effectively conveyed the intended emotions. AniBalloons covered a broad range of emotional parameters, comparable to frequently used emojis, offering potential for a wide array of affective expressions in daily communication. The findings suggest AniBalloons' promise for enhancing emotional expressiveness in text-based communication and provide early insights for future affective design.Comment: Accepted by CSCW 2023 poste

    Optimal combination of MYCN differential gene and cellular senescence gene predicts adverse outcomes in patients with neuroblastoma

    Get PDF
    IntroductionNeuroblastoma (NB) is a common extracranial tumor in children and is highly heterogeneous. The factors influencing the prognosis of NB are not simple.MethodsTo investigate the effect of cell senescence on the prognosis of NB and tumor immune microenvironment, 498 samples of NB patients and 307 cellular senescence-related genes were used to construct a prediction signature.ResultsA signature based on six optimal candidate genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) was successfully constructed and proved to have good prognostic ability. Through verification, the signature had more advantages than the gene expression level alone in evaluating prognosis was found. Further T cell phenotype analysis displayed that exhausted phenotype PD-1 and senescence-related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-amplified group with higher risk-score.ConclusionA signature constructed the six MYCN-amplified differential genes and aging-related genes can be used to predict the prognosis of NB better than using each high-risk gene individually and to evaluate immunosuppressed and aging tumor microenvironment

    Largely tunable band structures of few-layer InSe by uniaxial strain

    Full text link
    Due to the strong quantum confinement effect, few-layer {\gamma}-InSe exhibits a layer-dependent bandgap, spanning the visible and near infrared regions, and thus recently draws tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structure. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain, and observe salient shift of photoluminescence (PL) peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for 4- to 8-layer samples, which is much larger than that for the widely studied MoS2 monolayer. Density functional calculations well reproduce the observed layer-dependent bandgaps and the strain effect, and reveal that the shift rate decreases with increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile 2D electronic and optoelectronic material, which is suitable for tunable light emitters, photo-detectors and other optoelectronic devices.Comment: submitte
    • …
    corecore