163 research outputs found

    Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study

    Full text link
    We report on the surface modification of polytetrafluoroethylene (PTFE) as an example of soft- and bio-materials that occur under plasma discharge by kinetics analysis of radical formation using in situ real-time electron spin resonance (ESR) measurements. During irradiation with hydrogen plasma, simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the C-DB density were observed in real time, where the rate of density change was accelerated during initial irradiation and then became constant over time. It is noteworthy that C-DBs were formed synergistically by irradiation with both vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR technique is useful to elucidate synergistic roles during plasma surface modification.Comment: 14 pages, 4 figure

    Age is not a limiting factor for brachytherapy for carcinoma of the node negative oral tongue in patients aged eighty or older

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine the role of brachytherapy for aged patients 80 or more in the trend of rapidly increasing number.</p> <p>Methods</p> <p>We examined the outcomes for elderly patients with node negative oral tongue cancer (T1-3N0M0) treated with brachytherapy. The 21 patients (2 T1, 14 T2, and 5 T3 cases) ranged in age from 80 to 89 years (median 81), and their cancer was pathologically confirmed. All patients underwent definitive radiation therapy, with low dose rate (LDR) Ra-226 brachytherapy (n = 4; median 70Gy), with Ir-192 (n = 12; 70Gy), with Au-198 (n = 1) or with high dose rate (HDR) Ir-192 brachytherapy (n = 4; 60 Gy). Eight patients also underwent external radiotherapy (median 30 Gy). The period of observation ranged from 13 months to 14 years (median 2.5 years). We selected 226 population matched younger counterpart from our medical chart.</p> <p>Results</p> <p>Definitive radiation therapy was completed for all 21 patients (100%), and acute grade 2-3 mucositis related to the therapy was tolerable. Local control (initial complete response) was attained in 19 of 21 patients (90%). The 2-year and 5-year local control rates were 91%, (100% for T1, 83% for T2 and 80% for T3 tumors after 2 years). These figures was not inferior to that of younger counterpart (82% at 5-year, n.s.). The cause-specific survival rate was 83% and the regional control rate 84% at the 2-years follow-up. However, 12 patients died because of intercurrent diseases or senility, resulting in overall survival rates of 55% at 2 years and 34% at 5 years.</p> <p>Conclusion</p> <p>Age is not a limiting factor for brachytherapy for appropriately selected elderly patients, and brachytherapy achieved good local control with acceptable morbidity.</p

    Clinical response in Japanese metastatic melanoma patients treated with peptide cocktail-pulsed dendritic cells

    Get PDF
    BACKGROUND: Metastatic, chemotherapy-resistant melanoma is an intractable cancer with a very poor prognosis. As to immunotherapy targeting metastatic melanoma, HLA-A2(+ )patients were mainly enrolled in the study in Western countries. However, HLA-A24(+ )melanoma patients-oriented immunotherapy has not been fully investigated. In the present study, we investigated the effect of dendritic cell (DC)-based immunotherapy on metastatic melanoma patients with HLA-A2 or A24 genotype. METHODS: Nine cases of metastatic melanoma were enrolled into a phase I study of monocyte-derived dendritic cell (DC)-based immunotherapy. HLA-genotype analysis revealed 4 cases of HLA-A*0201, 1 of A*0206 and 4 of A*2402. Enriched monocytes were obtained using OptiPrep™ from leukapheresis products, and then incubated with GM-CSF and IL-4 in a closed serum-free system. After pulsing with a cocktail of 5 melanoma-associated synthetic peptides (gp100, tyrosinase, MAGE-2, MAGE-3 and MART-1 or MAGE-1) restricted to HLA-A2 or A24 and KLH, cells were cryopreserved until used. Finally, thawed DCs were washed and injected subcutaneously (s.c.) into the inguinal region in a dose-escalation manner. RESULTS: The mean percentage of DCs rated as lin(-)HLA-DR(+ )in melanoma patients was 46.4 ± 15.6 %. Most of DCs expressed high level of co-stimulatory molecules and type1 phenotype (CD11c(+)HLA-DR(+)), while a moderate number of mature DCs with CD83 and CCR7 positive were contained in DC products. DC injections were well tolerated except for transient liver dysfunction (elevation of transaminases, Grade I-II). All 6 evaluable cases except for early PD showed positive immunological responses to more than 2 melanoma peptides in an ELISPOT assay. Two representative responders demonstrated strong HLA-class I protein expression in the tumor and very high scores of ELISPOT that might correlate to the regression of metastatic tumors. Clinical response through DC injections was as follows : 1CR, 1 PR, 1SD and 6 PD. All 59 DC injections in the phase I study were tolerable in terms of safety, however, the maximal tolerable dose of DCs was not determined. CONCLUSIONS: These results suggested that peptide cocktail-treated DC-based immunotherapy had the potential for utilizing as one of therapeutic tools against metastatic melanoma in Japan

    Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation

    Get PDF
    Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway
    corecore