411 research outputs found

    Quantum Walks on the Line with Phase Parameters

    Full text link
    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step towards this objective, the following question is being addressed: {\it Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps?} This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.Comment: In v2 a small typo was fixed. The exponent in the definition of N_j in Theorem 3 was changed from -1/2 to 1. 20 pages, 3 figures. Presented at 10th Asian Conference on Quantum Information Science (AQIS'10). Tokyo, Japan. August 27-31, 201

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    p42MAPK-mediated phosphorylation of xEIAP/XLX in Xenopus cytostatic factor-arrested egg extracts

    Get PDF
    BACKGROUND: BIR family proteins are evolutionarily conserved anti-apoptotic molecules. One member of Xenopus BIR family proteins, xEIAP/XLX, is a weak apoptosis inhibitor and rapidly degraded in a cell-free apoptotic execution system derived from interphase egg extracts. However, unfertilized eggs are naturally arrested at the metaphase of meiosis II by the concerted activities of Mos-MEK-p42MAPK-p90Rsk kinase cascade (cytostatic factor pathway) and many mitotic kinases. Previous studies suggest that cytostatic factor-arrested egg extracts are more resistant to spontaneous apoptosis than interphase egg extracts in a p42MAPK-dependent manner. We tested whether xEIAP/XLX might be phosphorylated in cytostatic factor-arrested egg extracts, and also examined whether xEIAP/XLX could be functionally regulated by phosphorylation. RESULTS: We found that p42MAPK was the major kinase phosphorylating xEIAP/XLX in cytostatic factor-arrested egg extracts, and three Ser residues (Ser 235/251/254) were identified as p42MAPK-mediated phosphorylation sites. We characterized the behaviors of various xEIAP/XLX mutants that could not be phosphorylated by p42MAPK. However, neither protein stability nor anti-apoptotic ability of xEIAP/XLX was significantly altered by the substitution of Ser with either Ala or Asp at these three sites. CONCLUSION: xEIAP/XLX is physiologically phosphorylated by p42MAPK in Xenopus unfertilized eggs. However, this protein may not serve as an essential mediator of p42MAPK-dependent anti-apoptotic activity

    A SAT approach to the initial mapping problem in SWAP gate insertion for commuting gates

    Full text link
    Most quantum circuits require SWAP gate insertion to run on quantum hardware with limited qubit connectivity. A promising SWAP gate insertion method for blocks of commuting two-qubit gates is a predetermined swap strategy which applies layers of SWAP gates simultaneously executable on the coupling map. A good initial mapping for the swap strategy reduces the number of required swap gates. However, even when a circuit consists of commuting gates, e.g., as in the Quantum Approximate Optimization Algorithm (QAOA) or trotterized simulations of Ising Hamiltonians, finding a good initial mapping is a hard problem. We present a SAT-based approach to find good initial mappings for circuits with commuting gates transpiled to the hardware with swap strategies. Our method achieves a 65% reduction in gate count for random three-regular graphs with 500 nodes. In addition, we present a heuristic approach that combines the SAT formulation with a clustering algorithm to reduce large problems to a manageable size. This approach reduces the number of swap layers by 25% compared to both a trivial and random initial mapping for a random three-regular graph with 1000 nodes. Good initial mappings will therefore enable the study of quantum algorithms, such as QAOA and Ising Hamiltonian simulation applied to sparse problems, on noisy quantum hardware with several hundreds of qubits.Comment: 7 page

    Die auf die Zahn der Zahnrader wirkenden dynamischen Zahnkrafte (1 Teil) : Dynamische Zahnkrafte der aus Nylon hergestellten Zahnrader

    Get PDF
    In order to measure the dynamic loads on the Nylon gear teeth, a gear testing machine of torque circulation type was used. Stresses on the root fillet of the Nylon gear teeth were observed under various operating conditions with bonded strain gauges mounted on the root of Nylon gear teeth and with a double beam oscilloscope. Furthermore, theoretical calculations were made of dynamic loads on the Nylon gear teeth under various operating conditions. The results obtained are summerized as follows : 1. Dynamic loads increased in value observed with the increase in the peripheral speed of gears. 2. The rate of the increment of dynamic loads observed in low speed range (200 r.p.m. to 800 r.p.m.) was larger than the rate of the increment of dynamic loads in high speed range (800 r.p.m. to 1400 r.p.m.). 3. Dynamic loads theoretically calculated are smaller in value than dynamic loads observed

    Extreme plurisubharmonic singularities

    Full text link
    A plurisubharmonic singularity is extreme if it cannot be represented as the sum of non-homothetic singularities. A complete characterization of such singularities is given for the case of homogeneous singularities (in particular, those determined by generic holomorphic mappings) in terms of decomposability of certain convex sets in \Rn. Another class of extreme singularities is presented by means of a notion of relative type.Comment: 10 pages; final form, to appear in Ann. Polon. Mat
    corecore