32,849 research outputs found
Electrochemical kinetics and dimensional considerations at the nanoscale
It is shown that the consideration of the density of states variation in
nanoscale electrochemical systems yields modulations in the rate constant and
concomitant electrical currents. The proposed models extend the utility of
Marcus-Hush-Chidsey (MHC) kinetics to a larger class of materials and could be
used as a test of dimensional character. The implications of the study are of
much significance to an understanding and modulation of charge transfer
nanostructured electrodes.Comment: 15 pages, 6 figure
Metastability of R-Charged Black Holes
The global stability of R-charged AdS black holes in a grand canonical
ensemble is examined by eliminating the constraints from the action, but
without solving the equations of motion, thereby constructing the reduced
action of the system. The metastability of the system is found to set in at a
critical value of the chemical potential which is conjugate to the R-charge.
The relation among the small black hole, large black hole and the instability
is discussed. The result is consistent with the metastability found in the
AdS/CFT-conjectured dual field theory. The "renormalized" temperature of AdS
black holes, which has been rather ad hoc, is suggested to be the boundary
temperature in the sense of AdS/CFT correspondence. As a byproduct of the
analysis, we find a more general solution of the theory and its properties are
briefly discussed.Comment: 36 pages, 7 figures, v2 is the published version. the exposition is
made slightly shorter and hopefully cleare
Modified Laplace transformation method and its application to the anharmonic oscillator
We apply a recently proposed approximation method to the evaluation of
non-Gaussian integral and anharmonic oscillator. The method makes use of the
truncated perturbation series by recasting it via the modified Laplace integral
representation. The modification of the Laplace transformation is such that the
upper limit of integration is cut off and an extra term is added for the
compensation. For the non-Gaussian integral, we find that the perturbation
series can give accurate result and the obtained approximation converges to the
exact result in the limit ( denotes the order of perturbation
expansion). In the case of anharmonic oscillator, we show that several order
result yields good approximation of the ground state energy over the entire
parameter space. The large order aspect is also investigated for the anharmonic
oscillator.Comment: 26 pages including tables, Late
Mott transition and ferrimagnetism in the Hubbard model on the anisotropic kagom\'e lattice
Mott transition and ferrimagnetism are studied in the Hubbard model on the
anisotropic kagom\'e lattice using the variational cluster approximation and
the phase diagram at zero temperature and half-filling is analyzed. The
ferrimagnetic phase rapidly grows as the geometric frustration is relaxed, and
the Mott insulator phase disappears in moderately frustrated region, showing
that the ferrimagnetic fluctuations stemming from the relaxation of the
geometric frustration is enhanced by the electron correlations. In metallic
phase, heavy fermion behavior is observed and mass enhancement factor is
computed. Enhancement of effective spatial anisotropy by the electron
correlations is also confirmed in moderately frustrated region, and its effect
on heavy fermion behavior is examined.Comment: 5 pages, 6 figure
Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
We numerically investigate localization properties of electronic states in a
static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with
realistic parameters obtained by quantum-chemical calculation. The randomness
in the on-site energies caused by the electron-phonon coupling are completely
correlated to the off-diagonal parts. In the single electron model, the effect
of the hydrogen-bond stretchings, the twist angles between the base pairs and
the finite system size effects on the energy dependence of the localization
length and on the Lyapunov exponent are given. The localization length is
reduced by the influence of the fluctuations in the hydrogen bond stretchings.
It is also shown that the helical twist angle affects the localization length
in the poly(dG)-poly(dC) DNA polymer more strongly than in the
poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy
dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure
Modified Laplace transformation method at finite temperature: application to infra-red problems of N component theory
Modified Laplace transformation method is applied to N component
theory and the finite temperature problem in the massless limit is re-examined
in the large N limit. We perform perturbation expansion of the dressed thermal
mass in the massive case to several orders and try the massless approximation
with the help of modified Laplace transformation. The contribution with
fractional power of the coupling constant is recovered from the truncated
massive series. The use of inverse Laplace transformation with respect to the
mass square is crucial in evaluating the coefficients of fractional power
terms.Comment: 16pages, Latex, typographical errors are correcte
Emergence of noncollinear magnetic ordering in small magnetic clusters: Mn and As@Mn
Using first-principles density functional calculations, we have studied the
magnetic ordering in pure Mn (10, 13, 15, 19) and As@Mn
(10) clusters. Although, for both pure and doped manganese clusters,
there exists many collinear and noncollinear isomers close in energy, the
smaller clusters with 5 have collinear magnetic ground state and
the emergence of noncollinear ground states is seen for 6 clusters.
Due to strong hybridization in As@Mn clusters, the binding energy is
substantially enhanced and the magnetic moment is reduced compared to the
corresponding pure Mn clusters.Comment: 10 Pages and 5 Figure
- …