345 research outputs found

    Proximity to a Nearly Superconducting Quantum Critical Liquid

    Full text link
    The coupling between superconductors and a quantum critical liquid that is nearly superconducting provides natural interpretation for the Josephson effect over unexpectedly long junctions, and the remarkable stripe-spacing dependence of the critical temperature in LSCO and YBCO superconductors.Comment: four two-column pages, no figure

    Nuclear Alpha-Particle Condensates

    Full text link
    The α\alpha-particle condensate in nuclei is a novel state described by a product state of α\alpha's, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical α\alpha-particle condensate is the Hoyle state (Ex=7.65E_{x}=7.65 MeV, 02+0^+_2 state in 12^{12}C), which plays a crucial role for the synthesis of 12^{12}C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the α\alpha particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that α\alpha-particle condensate states also exist in heavier nαn\alpha nuclei, like 16^{16}O, 20^{20}Ne, etc. For instance the 06+0^+_6 state of 16^{16}O at Ex=15.1E_{x}=15.1 MeV is identified from a theoretical analysis as being a strong candidate of a 4α4\alpha condensate. The calculated small width (34 keV) of 06+0^+_6, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as 11^{11}B and 13^{13}C, we discuss candidates for the product states of clusters, composed of α\alpha's, triton's, and neutrons etc. The relationship of α\alpha-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for α\alpha particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck, (Springer-Verlag, Berlin, 2011

    Holons on a meandering stripe: quantum numbers

    Full text link
    We attempt to access the regime of strong coupling between charge carriers and transverse dynamics of an isolated conducting ``stripe'', such as those found in cuprate superconductors. A stripe is modeled as a partially doped domain wall in an antiferromagnet (AF), introduced in the context of two different models: the t-J model with strong Ising anisotropy, and the Hubbard model in the Hartree-Fock approximation. The domain walls with a given linear charge density are supported artificially by boundary conditions. In both models we find a regime of parameters where doped holes lose their spin and become holons (charge Q=1, spin S_z=0), which can move along the stripe without frustrating AF environment. One aspect in which the holons on the AF domain wall differ from those in an ordinary one-dimensional electron gas is their transverse degree of freedom: a mobile holon always resides on a transverse kink (or antikink) of the domain wall. This gives rise to two holon flavors and to a strong coupling between doped charges and transverse fluctuations of a stripe.Comment: Minor revisions: references update

    Non-linear response of a Kondo system: Perturbation approach to the time dependent Anderson impurity model

    Full text link
    Nonlinear tunneling current through a quantum dot (an Anderson impurity system) subject to both constant and alternating electric fields is studied in the Kondo regime. A systematic diagram technique is developed for perturbation study of the current in physical systems out of equilibrium governed by time - dependent Hamiltonians of the Anderson and the Kondo models. The ensuing calculations prove to be too complicated for the Anderson model, and hence, a mapping on an effective Kondo problem is called for. This is achieved by constructing a time - dependent version of the Schrieffer - Wolff transformation. Perturbation expansion of the current is then carried out up to third order in the Kondo coupling J yielding a set of remarkably simple analytical expressions for the current. The zero - bias anomaly of the direct current differential conductance is shown to be suppressed by the alternating field while side peaks develop at finite source - drain voltage. Both the direct component and the first harmonics of the time - dependent response are equally enhanced due to the Kondo effect, while amplitudes of higher harmonics are shown to be relatively small. A zero alternating bias anomaly is found in the alternating current differential conductance, that is, it peaks around zero alternating bias. This peak is suppressed by the constant bias. No side peaks show up in the differential alternating - conductance but their counterpart is found in the derivative of the alternating current with respect to the direct bias. The results pertaining to nonlinear response are shown to be valid also below the Kondo temperature.Comment: 55 latex pages 11 ps figure

    Bias driven coherent carrier dynamics in a two-dimensional aperiodic potential

    Get PDF
    We study the dynamics of an electron wave-packet in a two-dimensional square lattice with an aperiodic site potential in the presence of an external uniform electric field. The aperiodicity is described by ϵm=Vcos(παmxνx)cos(παmyνy)\epsilon_{\bf m} = V\cos{(\pi\alpha m_x^{\nu_x})}\cos{(\pi\alpha m_y^{\nu_y})} at lattice sites (mx,my)(m_x, m_y), with πα\pi \alpha being a rational number, and νx\nu_x and νy\nu_y tunable parameters, controlling the aperiodicity. Using an exact diagonalization procedure and a finite-size scaling analysis, we show that in the weakly aperiodic regime (νx,νy<1\nu_x,\nu_y < 1), a phase of extended states emerges in the center of the band at zero field giving support to a macroscopic conductivity in the thermodynamic limit. Turning on the field gives rise to Bloch oscillations of the electron wave-packet. The spectral density of these oscillations may display a double peak structure signaling the spatial anisotropy of the potential landscape. The frequency of the oscillations can be understood using a semi-classical approach.Comment: 16 pages, to appear in Phys. Lett.

    Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2_{2}CuO4.11_{4.11} and La1.88_{1.88}Sr0.12_{0.12}CuO4_{4}

    Full text link
    This paper reports muon spin relaxation (MuSR) measurements of two single crystals of the title high-Tc cuprate systems where static incommensurate magnetism and superconductivity coexist. By zero-field MuSR measurements and subsequent analyses with simulations, we show that (1) the maximum ordered Cu moment size (0.36 Bohr magneton) and local spin structure are identical to those in prototypical stripe spin systems with the 1/8 hole concentration; (2) the static magnetism is confined to less than a half of the volume of the sample, and (3) regions with static magnetism form nano-scale islands with the size comparable to the in-plane superconducting coherence length. By transverse-field MuSR measurements, we show that Tc of these systems is related to the superfluid density, in the same way as observed in cuprate systems without static magnetism. We discuss a heuristic model involving percolation of these nanoscale islands with static magnetism as a possible picture to reconcile heterogeneity found by the present MuSR study and long-range spin correlations found by neutron scattering.Comment: 19 pages, 15 figures, submitted to Phys. Rev. B. E-mail: [email protected]

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Electronic structure and magnetic properties of the linear chain cuprates Sr_2CuO_3 and Ca_2CuO_3

    Full text link
    Sr_2CuO_3 and Ca_2CuO_3 are considered to be model systems of strongly anisotropic, spin-1/2 Heisenberg antiferromagnets. We report on the basis of a band-structure analysis within the local density approximation and on the basis of available experimental data a careful analysis of model parameters for extended Hubbard and Heisenberg models. Both insulating compounds show half-filled nearly one-dimensional antibonding bands within the LDA. That indicates the importance of strong on-site correlation effects. The bonding bands of Ca_2CuO_3 are shifted downwards by 0.7 eV compared with Sr_2CuO_3, pointing to different Madelung fields and different on-site energies within the standard pd-model. Both compounds differ also significantly in the magnitude of the inter-chain dispersion along the crystallographical a-direction: \approx 100 meV and 250 meV, respectively. Using the band-structure and experimental data we parameterize a one-band extended Hubbard model for both materials which can be further mapped onto an anisotropic Heisenberg model. From the inter-chain dispersion we estimate a corresponding inter-chain exchange constant J_{\perp} \approx 0.8 and 3.6 meV for Sr_2CuO_3 and Ca_2CuO_3, respectively. Comparing several approaches to anisotropic Heisenberg problems, namely the random phase spin wave approximation and modern versions of coupled quantum spin chains approaches, we observe the advantage of the latter in the reproduction of reasonable values for the N\'eel temperature T_N and the magnetization m_0 at zero temperature. Our estimate of JJ_{\perp} gives the right order of magnitude and the correct tendency going from Sr_2CuO_3 to Ca_2CuO_3. In a comparative study we also include CuGeO_3.Comment: 23 pages, 5 figures, 1 tabl
    corecore