10 research outputs found

    Vaccine Platforms Combining Circumsporozoite Protein and Potent Immune Modulators, rEA or EAT-2, Paradoxically Result in Opposing Immune Responses

    Get PDF
    Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo

    IRF6 and SPRY4 Signaling Interact in Periderm Development.

    No full text

    Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology

    No full text
    Nonsyndromic oral clefting (NSOC) is although one of the most common congenital disorders worldwide, its underlying molecular basis remains elusive. This process has been hindered by the overwhelmingly high level of heterogeneity observed. Given that hitherto multiple loci and genes have been associated with NSOC, and that complex diseases are usually polygenic and show a considerable level of missing heritability, we used a systems genetics approach to reconstruct the NSOC network by integrating human-based physical and regulatory interactome with whole-transcriptome microarray data. We show that the network component contains 53% (23/43) of the curated NSOC-implicated gene set and displays a highly significant propinquity (P ≺ 0.0001) between genes implicated at the genomic level and those differentially expressed at the transcriptome level. In addition, we identified bona fide candidate genes based on topological features and dysregulation (e.g. ANGPTL4), and similarly prioritised genes at GWA loci (e.g. MYC and CREBBP), thus providing further insight into the underlying heterogeneity of NSOC. Gene ontology analysis results were consistent with the NSOC network being associated with embryonic organ morphogenesis and also hinted at an aetiological overlap between NSOC and cancer. We therefore recommend this approach to be applied to other heterogeneous complex diseases to not only provide a molecular framework to unify genes which may seem as disparate entities linked to the same disease, but to also predict and prioritise candidate genes for further validation, thus addressing the missing heritability

    Tooth agenesis and orofacial clefting: genetic brothers in arms?

    No full text
    corecore