306 research outputs found

    B -> J/psi K^* Decays in QCD Factorization

    Full text link
    The hadronic decay B -> J K^* is analyzed within the framework of QCD factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the transversity basis and their relative phases are studied using various different form-factor models for B-K^* transition. The effective parameters a_2^h for helicity h=0,+,- states receive different nonfactorizable contributions and hence they are helicity dependent, contrary to naive factorization where a_2^h are universal and polarization independent. QCD factorization breaks down even at the twist-2 level for transverse hard spectator interactions. Although a nontrivial strong phase for the A_\parallel amplitude can be achieved by adjusting the phase of an infrared divergent contribution, the present QCD factorization calculation cannot say anything definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3 corrections and is not large enough to account for the observed branching ratio and the fraction of longitudinal polarization. Possible enhancement mechanisms for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos correcte

    Neutrinos in Non-linear Structure Formation - a Simple SPH Approach

    Full text link
    We present a novel method for implementing massive neutrinos in N-body simulations. Instead of sampling the neutrino velocity distribution by individual point particles we take neutrino free-streaming into account by treating it as an effective redshift dependent sound speed in a perfect isothermal fluid, and assume a relation between the sound speed and velocity dispersion of the neutrinos. Although the method fails to accurately model the true neutrino power spectrum, it is able to calculate the total matter power spectrum to the same accuracy as more complex hybrid neutrino methods, except on very small scales. We also present an easy way to update the publicly available Gadget-2 version with this neutrino approximation.Comment: 13 pages, 7 figure

    Soft end-point and mass corrections to the eta' g*g* vertex function

    Full text link
    Power-suppressed corrections arising from end-point integration regions to the space-like vertex function of the massive eta'-meson virtual gluon transition eta' - g*g* are computed. Calculations are performed within the standard hard-scattering approach (HSA) and the running coupling method supplemented by the infrared renormalon calculus. Contributions to the vertex function from the quark and gluon contents of the eta' -meson are taken into account and the Borel resummed expressions for F_{eta' g*g*}(Q2,\omega ,\eta), as well as for F_{eta' g g*}}(Q^{2},\omega =\pm 1,\eta) and F_{eta' g*g*}(Q^{2},\omega =0,\eta) are obtained. It is demonstrated that the power-suppressed corrections \sim (\Lambda ^{2}/Q^{2})^{n}, in the explored range of the total gluon virtuality 1 <Q2 < 25 GeV2, considerably enhance the vertex function relative to the results found in the framework of the standard HSA with a fixed coupling. Modifications generated by the eta ' -meson mass effects are discussed

    Criticality of the Mean-Field Spin-Boson Model: Boson State Truncation and Its Scaling Analysis

    Full text link
    The spin-boson model has nontrivial quantum phase transitions at zero temperature induced by the spin-boson coupling. The bosonic numerical renormalization group (BNRG) study of the critical exponents β\beta and δ\delta of this model is hampered by the effects of boson Hilbert space truncation. Here we analyze the mean-field spin boson model to figure out the scaling behavior of magnetization under the cutoff of boson states NbN_{b}. We find that the truncation is a strong relevant operator with respect to the Gaussian fixed point in 0<s<1/20<s<1/2 and incurs the deviation of the exponents from the classical values. The magnetization at zero bias near the critical point is described by a generalized homogeneous function (GHF) of two variables τ=ααc\tau=\alpha-\alpha_{c} and x=1/Nbx=1/N_{b}. The universal function has a double-power form and the powers are obtained analytically as well as numerically. Similarly, m(α=αc)m(\alpha=\alpha_{c}) is found to be a GHF of ϵ\epsilon and xx. In the regime s>1/2s>1/2, the truncation produces no effect. Implications of these findings to the BNRG study are discussed.Comment: 9 pages, 7 figure

    Sterile neutrinos with eV masses in cosmology -- how disfavoured exactly?

    Full text link
    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch). In the minimal LambdaCDM model, such sterile neutrinos are strongly disfavoured by current data because they contribute too much hot dark matter. However, if the cosmological framework is extended to include also additional relativistic degrees of freedom -- beyond the three standard neutrinos and the putative sterile neutrinos, then the hot dark matter constraint on the sterile states is considerably relaxed. A further improvement is achieved by allowing a dark energy equation of state parameter w<-1. While BBN strongly disfavours extra radiation beyond the assumed eV-mass sterile neutrino, this constraint can be circumvented by a small nu_e degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20 to 75% relative to the standard LambdaCDM value.Comment: 14 pages, 6 figures, v2: minor changes, matches version accepted for publication in JCA

    Exploring CP Violation through Correlations in B --> pi K, B_d --> pi^+pi^-, B_s --> K^+K^- Observable Space

    Full text link
    We investigate allowed regions in observable space of B --> pi K, B_d --> pi^+pi^- and B_s --> K^+K^- decays, characterizing these modes in the Standard Model. After a discussion of a new kind of contour plots for the BπKB\to\pi K system, we focus on the mixing- induced and direct CP asymmetries of the decays B_d --> pi^+pi^- and B_s--> K^+K^-. Using experimental information on the CP-averaged B_d --> pi^{+/-}K^{+/-} and B_d --> pi^+pi^- branching ratios, the relevant hadronic penguin parameters can be constrained,implying certain allowed regions in observable space. In the case of B_d --> pi^+pi^-, an interesting situation arises now in view of the recent B-factory measurements of CP violation in this channel, allowing us to obtain new constraints on the CKM angle gamma as a function of the B^0_d--\bar{B^0_d} mixing phase phi_d=2beta, which is fixed through A_{CP}^{mix}(B_d --> J/psi K_S) up to a twofold ambiguity. If we assume that A_{CP}^{mix}(B_d --> pi^+pi^-) is positive, as indicated by recent Belle data, and that phi_d is in agreement with the ``indirect'' fits of the unitarity triangle, also the corresponding values for gamma around 60 degrees can be accommodated. On the other hand, for the second solution of phi_d, we obtain a gap around gamma ~ 60 degrees. The allowed region in the space of A_{CP}^{mix}(B_s --> K^+K^-) and A_{CP}^{dir}(B_s --> K^+K^-) is very constrained in the Standard Model, thereby providing a narrow target range for run II of the Tevatron and the experiments of the LHC era.Comment: 34 pages, LaTeX, 12 figures. More detailed introduction and a few Comments added, conclusions unchanged. To appear in Phys. Rev.

    Phenomenological Analysis of B->PP Decays with QCD Factorization

    Full text link
    In this paper, we study nonleptonic charmless B decays to two light pseudoscalar mesons within the frame of QCD factorization, including the contributions from the chirally enhanced power corrections and weak annihilation. Predictions for the CP-averaged branching ratios and CP-violating asymmetries are given. Within the reasonable range of the parameters, we find that our predictions for the branching ratios of B -> PP are consistent with the present experimental data. But because of the logarithmic divergences at the endpoints in the hard spectator scatterings and weak annihilation, there are still large uncertainties in these predictions.Comment: 34 pages, 5 figures. to appear in PR

    Elastic and inelastic SU(3)-breaking final-state interactions in B decays to pseudoscalar mesons

    Full text link
    We discuss all contributions from Zweig-rule-satisfying SU(3)-breaking final state interactions (FSIs)in the B -> PP decays (neglecting charmed intermediate states), where PP=pi pi, pi K, KK, pi eta (eta'), and K eta (eta'). First, effects of SU(3) breaking in rescattering through Pomeron exchange are studied. Then, after making a plausible assumption concerning the pattern of SU(3) breaking in non-Pomeron FSIs, we give general formulas for how the latter modify short-distance (SD) amplitudes. In the SU(3) limit, these formulas depend on three effective parameters characterizing the strength of all non-Pomeron rescattering effects. We point out that the experimental bounds on the B -> K^+K^- branching ratio may limit the value of only one of these FSI parameters. Thus, the smallness of the B -> K^+K^- decay rate does not imply negligible rescattering effects in other decays. Assuming a vanishing value of this parameter, we perform various fits to the available B -> PP branching ratios. The fits determine the quark-diagram SD amplitudes, the two remaining FSI parameters and the weak angle gamma. While the set of all B -> PP branching ratios is well described with gamma around its expected SM value, the fits permit other values of gamma as well. For a couple of such good fits, we predict asymmetries for the B -> K pi, pi^+ eta (eta'), K^+ eta (eta') decays as well as the values of the CP-violating parameters S_{pi pi} and C_{pi pi} for the time-dependent rate of B^0(t) -> pi^+ pi^-. Apart from a problem with the recent B^+ -> pi^+ eta asymmetry measurement, comparison with the data seems to favour the values of gamma in accordance with SM expectations.Comment: 27 pages, 5 figure

    Charmless BPPB \to PP decays using flavor SU(3) symmetry

    Full text link
    The decays of BB mesons to a pair of charmless pseudoscalar (PP) mesons are analyzed within a framework of flavor SU(3). Symmetry breaking is taken into account in tree (TT) amplitudes through ratios of decay constants; exact SU(3) is assumed elsewhere. Acceptable fits to BππB \to \pi \pi and BKπB \to K \pi branching ratios and CP asymmetries are obtained with tree, color-suppressed (CC), penguin (PP), and electroweak penguin (PEWP_{EW}) amplitudes. Crucial additional terms for describing processes involving η\eta and η\eta' include a large flavor-singlet penguin amplitude (SS) as proposed earlier and a penguin amplitude PtuP_{tu} associated with intermediate tt and uu quarks. For the B+π+ηB^+ \to \pi^+ \eta' mode a term StuS_{tu} associated with intermediate tt and uu quarks also may be needed. Values of the weak phase γ\gamma are obtained consistent with an earlier analysis of BVPB \to VP decays, where VV denotes a vector meson, and with other analyses of CKM parameters.Comment: 26 pages, 1 figure. To be submitted to Phys. Rev. D. Reference update
    corecore