8 research outputs found
Recommended from our members
Increasing the performance of a superconducting spin valve using a Heusler alloy
We have studied superconducting properties of spin-valve thin-layer heterostructures CoOx/F1/Cu/F2/Cu/Pb in which the ferromagnetic F1 layer was made of Permalloy while for the F2 layer we have taken a specially prepared film of the Heusler alloy Co2Cr1-xFexAl with a small degree of spin polarization of the conduction band. The heterostructures demonstrate a significant superconducting spin-valve effect, i.e., a complete switching on and offof the superconducting current flowing through the system by manipulating the mutual orientations of the magnetization of the F1 and F2 layers. The magnitude of the effect is doubled in comparison with the previously studied analogous multilayers with the F2 layer made of the strong ferromagnet Fe. Theoretical analysis shows that a drastic enhancement of the switching effect is due to a smaller exchange field in the heterostructure coming from the Heusler film as compared to Fe. This enables to approach an almost ideal theoretical magnitude of the switching in the Heusler-based multilayer with a F2 layer thickness of ca. 1 nm. © 2018 Kamashev et al
Proximity effects and characteristic lengths in ferromagnet-superconductor structures
We present an extensive theoretical investigation of the proximity effects
that occur in Ferromagnet/Superconductor () systems. We use a numerical
method to solve self consistently the Bogoliubov-de Gennes equations in the
continuum. We obtain the pair amplitude and the local density of states (DOS),
and use these results to extract the relevant lengths characterizing the
leakage of superconductivity into the magnet and to study spin splitting into
the superconductor. These phenomena are investigated as a function of
parameters such as temperature, magnet polarization, interfacial scattering,
sample size and Fermi wavevector mismatch, all of which turn out to have
important influence on the results. These comprehensive results should help
characterize and analyze future data and are shown to be in agreement with
existing experiments.Comment: 24 pages, including 26 figure
Phase coherence phenomena in superconducting films
Superconducting films subject to an in-plane magnetic field exhibit a gapless
superconducting phase. We explore the quasi-particle spectral properties of the
gapless phase and comment on the transport properties. Of particular interest
is the sensitivity of the quantum interference phenomena in this phase to the
nature of the impurity scattering. We find that films subject to columnar
defects exhibit a `Berry-Robnik' symmetry which changes the fundamental
properties of the system. Furthermore, we explore the integrity of the gapped
phase. As in the magnetic impurity system, we show that optimal fluctuations of
the random impurity potential conspire with the in-plane magnetic field to
induce a band of localized sub-gap states. Finally, we investigate the
interplay of the proximity effect and gapless superconductivity in thin normal
metal-superconductor bi-layers.Comment: 13 pages, 8 figures include
Symmetries of Pairing Correlations in Superconductor-Ferromagnet Nanostructures
Using selection rules imposed by the Pauli principle, we classify pairing
correlations according to their symmetry properties with respect to spin,
momentum, and energy. We observe that inhomogeneity always leads to mixing of
even- and odd-energy pairing components. We investigate the superconducting
pairing correlations present near interfaces between superconductors and
ferromagnets, with focus on clean systems consisting of singlet superconductors
and either weak or half-metallic ferromagnets. Spin-active scattering in the
interface region induces all of the possible symmetry components. In
particular, the long-range equal-spin pairing correlations have odd-frequency
s-wave and even-frequency p-wave components of comparable magnitudes. We also
analyze the Josephson current through a half-metal. We find analytic
expressions and an interesting universality in the temperature dependence of
the critical current in the tunneling limit.Comment: 20 pages, 5 figures, added citations, corrected typo
Superconducting Spin-Valve Effect in Structures with a Ferromagnetic Heusler Alloy Layer
© 2020, Pleiades Publishing, Inc. Abstract: We present comparative analysis of superconducting properties of two types of spin valves containing Heusler alloy Co2Cr1 –xFexAly as one of ferromagnetic layers (F1 or F2) in the F1/F2/S structures. We have used the Heusler alloy layer (i) as a weak ferromagnet in the case of the F2 layer and (ii) as a half-metal in the case of F1 layer. In the former case, large classical effect ΔTc of the superconducting spin valve is obtained; this is facilitated by a substantial triplet contribution ΔTctrip to the superconducting spin valve effect. In the latter case, giant value of ΔTctrip reaching 0.5 K is observed
Recommended from our members
Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1-xFexAly spin-valve structure
We report the superconducting properties of the Co2Cr1-xFexAly/Cu/Ni/Cu/Pb spin-valve structure the magnetic part of which comprises the Heusler alloy layer HA = Co2Cr1-xFexAly with a high degree of spin polarization (DSP) of the conduction band and a Ni layer of variable thickness. The separation between the superconducting transition curves measured for the parallel (α = 0°) and perpendicular (α = 90°) orientation of the magnetization of the HA and the Ni layers reaches up to 0.5 K (α is the angle between the magnetization of two ferromagnetic layers). For all studied samples the dependence of the superconducting transition temperature Tc on α demonstrates a deep minimum in the vicinity of the perpendicular configuration of the magnetizations. This suggests that the observed minimum and the corresponding full switching effect of the spin valve is caused by the long-range triplet component of the superconducting condensate in the multilayer. Such a large effect can be attributed to a half-metallic nature of the HA layer, which in the orthogonal configuration efficiently draws off the spin-polarized Cooper pairs from the space between the HA and Ni layers. Our results indicate a significant potential of the concept of a superconducting spin-valve multilayer comprising a half-metallic ferromagnet, recently proposed by A. Singh et al., Phys. Rev. X 2015, 5, 021019, in achieving large values of the switching effect