8 research outputs found

    Proximity effects and characteristic lengths in ferromagnet-superconductor structures

    Full text link
    We present an extensive theoretical investigation of the proximity effects that occur in Ferromagnet/Superconductor (F/SF/S) systems. We use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. We obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing the leakage of superconductivity into the magnet and to study spin splitting into the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wavevector mismatch, all of which turn out to have important influence on the results. These comprehensive results should help characterize and analyze future data and are shown to be in agreement with existing experiments.Comment: 24 pages, including 26 figure

    Phase coherence phenomena in superconducting films

    Full text link
    Superconducting films subject to an in-plane magnetic field exhibit a gapless superconducting phase. We explore the quasi-particle spectral properties of the gapless phase and comment on the transport properties. Of particular interest is the sensitivity of the quantum interference phenomena in this phase to the nature of the impurity scattering. We find that films subject to columnar defects exhibit a `Berry-Robnik' symmetry which changes the fundamental properties of the system. Furthermore, we explore the integrity of the gapped phase. As in the magnetic impurity system, we show that optimal fluctuations of the random impurity potential conspire with the in-plane magnetic field to induce a band of localized sub-gap states. Finally, we investigate the interplay of the proximity effect and gapless superconductivity in thin normal metal-superconductor bi-layers.Comment: 13 pages, 8 figures include

    Symmetries of Pairing Correlations in Superconductor-Ferromagnet Nanostructures

    Full text link
    Using selection rules imposed by the Pauli principle, we classify pairing correlations according to their symmetry properties with respect to spin, momentum, and energy. We observe that inhomogeneity always leads to mixing of even- and odd-energy pairing components. We investigate the superconducting pairing correlations present near interfaces between superconductors and ferromagnets, with focus on clean systems consisting of singlet superconductors and either weak or half-metallic ferromagnets. Spin-active scattering in the interface region induces all of the possible symmetry components. In particular, the long-range equal-spin pairing correlations have odd-frequency s-wave and even-frequency p-wave components of comparable magnitudes. We also analyze the Josephson current through a half-metal. We find analytic expressions and an interesting universality in the temperature dependence of the critical current in the tunneling limit.Comment: 20 pages, 5 figures, added citations, corrected typo

    Superconducting Spin-Valve Effect in Structures with a Ferromagnetic Heusler Alloy Layer

    No full text
    © 2020, Pleiades Publishing, Inc. Abstract: We present comparative analysis of superconducting properties of two types of spin valves containing Heusler alloy Co2Cr1 –xFexAly as one of ferromagnetic layers (F1 or F2) in the F1/F2/S structures. We have used the Heusler alloy layer (i) as a weak ferromagnet in the case of the F2 layer and (ii) as a half-metal in the case of F1 layer. In the former case, large classical effect ΔTc of the superconducting spin valve is obtained; this is facilitated by a substantial triplet contribution ΔTctrip to the superconducting spin valve effect. In the latter case, giant value of ΔTctrip reaching 0.5 K is observed

    Recent Achievements on the Physics of High-T C Superconductor Josephson Junctions: Background, Perspectives and Inspiration

    No full text
    corecore