32 research outputs found

    On the gauge and BRST invariance of the chiral QED with Faddeevian anomaly

    Full text link
    Chiral Schwinger model with the Faddeevian anomaly is considered. It is found that imposing a chiral constraint this model can be expressed in terms of chiral boson. The model when expressed in terms of chiral boson remains anomalous and the Gauss law of which gives anomalous Poisson brackets between itself. In spite of that a systematic BRST quantization is possible. The Wess-Zumino term corresponding to this theory appears automatically during the process of quantization. A gauge invariant reformulation of this model is also constructed. Unlike the former one gauge invariance is done here without any extension of phase space. This gauge invariant version maps onto the vector Schwinger model.The gauge invariant version of the chiral Schwinger model for a=2a=2 has a massive field with identical mass however gauge invariant version obtained here does not map on to that.Comment: 11 pages latex, no figures, A little change in Title and abstrac

    Exact Solution of Quantum Field Theory on Noncommutative Phase Spaces

    Full text link
    We present the exact solution of a scalar field theory defined with noncommuting position and momentum variables. The model describes charged particles in a uniform magnetic field and with an interaction defined by the Groenewold-Moyal star-product. Explicit results are presented for all Green's functions in arbitrary even spacetime dimensionality. Various scaling limits of the field theory are analysed non-perturbatively and the renormalizability of each limit examined. A supersymmetric extension of the field theory is also constructed in which the supersymmetry transformations are parametrized by differential operators in an infinite-dimensional noncommutative algebra.Comment: 70 pages AMSTe

    Genetic analysis of the ELOVL6 gene polymorphism associated with type 2 diabetes mellitus

    Get PDF
    Recent animal studies have indicated that overexpression of the elongation of long-chain fatty acids family member 6 (Elovl6) gene can cause insulin resistance and β-cell dysfunction. These are the major factors involved in the development of type 2 diabetes mellitus (T2DM). To identify the relationship between single nucleotide polymorphisms (SNP) ofELOVL6 and T2DM pathogenesis, we conducted a case-control study of 610 Han Chinese individuals (328 newly diagnosed T2DM and 282 healthy subjects). Insulin resistance and islet first-phase secretion function were evaluated by assessment of insulin resistance in a homeostasis model (HOMA-IR) and an arginine stimulation test. Three SNPs of the ELOVL6 gene were genotyped with polymerase chain reaction-restriction fragment length polymorphism, with DNA sequencing used to confirm the results. Only genotypes TT and CT of the ELOVL6 SNP rs12504538 were detected in the samples. Genotype CC was not observed. The T2DM group had a higher frequency of the C allele and the CT genotype than the control group. Subjects with the CT genotype had higher HOMA-IR values than those with the TT genotype. In addition, no statistical significance was observed between the genotype and allele frequencies of the control and T2DM groups for SNPs rs17041272 and rs6824447. The study indicated that the ELOVL6 gene polymorphism rs12504538 is associated with an increased risk of T2DM, because it causes an increase in insulin resistance

    Synthesis, microstructure and photoluminescence of well-aligned ZnO nanorods on Si substrate

    No full text
    Well-aligned zinc oxide (ZnO) nanorods were densely grown on Si substrate using ZnO thin-film seed layer without any catalysts and/or additives by a simple solid–vapour phase thermal sublimation technique. The growth mechanism can be interpreted as self-catalyst of zinc particles based on vapour–solid (VS) mechanism. High-resolution transmission electron microscopy (HRTEM) image and selected area electron diffraction (SAED) pattern confirmed that the single-crystalline growth of the nanorods were preferentially along c-axis of hexagonal crystal system. High-crystal quality ZnO nanorods with strong near band edge emission centred at 380 nm can be achieved on Si substrate by the introduction of sufficient oxygen during the nanorod growth processing
    corecore