673 research outputs found

    Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production

    Get PDF
    Producing indispensable hydrogen and oxygen for social development via water electrolysis shows more prospects than other technologies. Although electrocatalysts have been explored for centuries, a universal activity descriptor for both hydrogen-evolution reaction (HER) and oxygen-evolution reaction (OER) is not yet developed. Moreover, a unifying concept is not yet established to simultaneously understand HER/OER mechanisms. Here, the relationships between HER/OER activities in three common electrolytes and over ten representative material properties on 12 3d-metal-based model oxides are rationally bridged through statistical methodologies. The orbital charge-transfer energy (Δ) can serve as an ideal universal descriptor, where a neither too large nor too small Δ (≈1 eV) with optimal electron-cloud density around Fermi level affords the best activities, fulfilling Sabatier's principle. Systematic experiments and computations unravel that pristine oxide with Δ ≈ 1 eV possesses metal-like high-valence configurations and active lattice-oxygen sites to help adsorb key protons in HER and induce lattice-oxygen participation in the OER, respectively. After reactions, partially generated metals in the HER and high-valence hydroxides in the OER dominate proton adsorption and couple with pristine lattice-oxygen activation, respectively. These can be successfully rationalized by the unifying orbital charge-transfer theory. This work provides the foundation of rational material design and mechanism understanding for many potential applications

    Magnetotransport properties of magnetic granular solids: The role of unfilled d bands

    Get PDF
    We calculate the magnetoresistance and magnetothermopower of magnetic granular solids. Contrary to previous theories of the giant magnetoresistance (GMR), we demonstrate that the unfilled d bands of magnetic grains play an essential role in the transport properties of these systems. Our results relate GMR and magnetothermopower to microscopic and geometric quantities, and provide a natural explanation for many experimentally observed features, such as the (M/Ms)2 dependence of the GMR, the giant magnetothermopower and its 1/ρ scaling behavior, and the absence of negative GMR in rare-earth-nonmagnetic structures

    Neuropeptide Y1 receptor in immune cells regulates inflammation and insulin resistance associated with diet-induced obesity

    Get PDF
    Recruitment of activated immune cells into white adipose tissue (WAT) is linked to the development of insulin resistance and obesity, but the mechanism behind this is unclear. Here, we demonstrate that Y1 receptor signaling in immune cells controls inflammation and insulin resistance in obesity. Selective deletion of Y1 receptors in the hematopoietic compartment of mice leads to insulin resistance and inflammation in WAT under high fat-fed conditions. This is accompanied by decreased mRNA expression of the anti-inflammatory marker adiponectin in WAT and an increase of the proinflammatory monocyte chemoattractant protein-1 (MCP-1). In vitro, activated Y1-deficient intraperitoneal macrophages display an increased inflammatory response, with exacerbated secretion of MCP-1 and tumor necrosis factor, whereas addition of neuropeptide Y to wild-type macrophages attenuates the release of these cytokines, this effect being blocked by Y1 but not Y2 receptor antagonism. Importantly, treatment of adipocytes with the supernatant of activated Y1-deficient macrophages causes insulin resistance, as demonstrated by decreased insulin-induced phosphorylation of the insulin receptor and Akt as well as decreased expression of insulin receptor substrate 1. Thus, Y1 signaling in hematopoietic-derived cells such as macrophages is critical for the control of inflammation and insulin resistance in obesity.Laurence Macia, Ernie Yulyaningsih, Laurent Pangon, Amy D. Nguyen, Shu Lin, Yan C. Shi, Lei Zhang, Martijn Bijker, Shane Grey, Fabienne Mackay, Herbert Herzog, and Amanda Sainsbur

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    corecore