53 research outputs found

    Semileptonic B decays into even parity charmed mesons

    Get PDF
    By using a constituent quark model we compute the form factors relevant to semileptonic transitions of B mesons into low-lying p-wave charmed mesons. We evaluate the q^2 dependence of these form factors and compare them with other model calculations. The Isgur-Wise functions tau(1/2) and tau(3/2) are also obtained in the heavy quark limit of our results.Comment: 11 pages, 2 figure

    Nonequilibrium time evolution of the spectral function in quantum field theory

    Full text link
    Transport or kinetic equations are often derived assuming a quasi-particle (on-shell) representation of the spectral function. We investigate this assumption using a three-loop approximation of the 2PI effective action in real time, without a gradient expansion or on-shell approximation. For a scalar field in 1+1 dimensions the nonlinear evolution, including the integration over memory kernels, can be solved numerically. We find that a spectral function approximately described by a nonzero width emerges dynamically. During the nonequilibrium time evolution the Wigner transformed spectral function is slowly varying, even in presence of strong qualitative changes in the effective particle distribution. These results may be used to make further analytical progress towards a quantum Boltzmann equation including off-shell effects and a nonzero width.Comment: 20 pages with 6 eps figures, explanation and references added; to appear in Phys.Rev.

    Strangeness production time and the K+/pi+ horn

    Get PDF
    We construct a hadronic kinetic model which describes production of strange particles in ultrarelativistic nuclear collisions in the energy domain of SPS. We test this model on description of the sharp peak in the excitation function of multiplicity ratio K+/pi+ and demonstrate that hadronic model reproduces these data rather well. The model thus must be tested on other types of data in order to verify the hypothesis that deconfinement sets in at lowest SPS energies.Comment: proceedings of Hot Quarks 0

    Applicability of perturbative QCD to ΛbΛc\Lambda_b \to \Lambda_c decays

    Full text link
    We develop perturbative QCD factorization theorem for the semileptonic heavy baryon decay ΛbΛclνˉ\Lambda_b \to \Lambda_c l\bar{\nu}, whose form factors are expressed as the convolutions of hard bb quark decay amplitudes with universal Λb\Lambda_b and Λc\Lambda_c baryon wave functions. Large logarithmic corrections are organized to all orders by the Sudakov resummation, which renders perturbative expansions more reliable. It is observed that perturbative QCD is applicable to ΛbΛc\Lambda_b \to \Lambda_c decays for velocity transfer greater than 1.2. Under requirement of heavy quark symmetry, we predict the branching ratio B(ΛbΛclνˉ)2B(\Lambda_b \to \Lambda_c l{\bar\nu})\sim 2%, and determine the Λb\Lambda_b and Λc\Lambda_c baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results are changed, but the conclusion is the sam

    Solution to the 3-loop Φ\Phi-derivable Approximation for Scalar Thermodynamics

    Get PDF
    We solve the 3-loop Φ\Phi-derivable approximation to the thermodynamics of the massless ϕ4\phi^4 field theory by reducing it to a 1-parameter variational problem. The thermodynamic potential is expanded in powers of g2g^2 and m/Tm/T, where gg is the coupling constant, mm is a variational mass parameter, and TT is the temperature. There are ultraviolet divergences beginning at 6th order in gg that cannot be removed by renormalization. However the finite thermodynamic potential obtained by truncating after terms of 5th order in gg and m/Tm/T defines a stable approximation to the thermodynamic functions.Comment: 4 pages, 1 figur

    Lattice QCD Constraints on the Nuclear Equation of State

    Full text link
    Based on the quasi-particle description of the QCD medium at finite temperature and density we formulate the phenomenological model for the equation of state that exhibits crossover or the first order deconfinement phase transition. The models are constructed in such a way to be thermodynamically consistent and to satisfy the properties of the ground state nuclear matter comply with constraints from intermediate heavy--ion collision data. Our equations of states show quite reasonable agreement with the recent lattice findings on temperature and baryon chemical potential dependence of relevant thermodynamical quantities in the parameter range covering both the hadronic and quark--gluon sectors. The model predictions on the isentropic trajectories in the phase diagram are shown to be consistent with the recent lattice results. Our nuclear equations of states are to be considered as an input to the dynamical models describing the production and the time evolution of a thermalized medium created in heavy ion collisions in a broad energy range from SIS up to LHC.Comment: 13 pages, 11 figure

    In-medium relativistic kinetic theory and nucleon-meson systems

    Full text link
    Within the σω\sigma-\omega model of coupled nucleon-meson systems, a generalized relativistic Lenard--Balescu--equation is presented resulting from a relativistic random phase approximation (RRPA). This provides a systematic derivation of relativistic transport equations in the frame of nonequilibrium Green's function technique including medium effects as well as flucuation effects. It contains all possible processes due to one meson exchange and special attention is kept to the off--shell character of the particles. As a new feature of many particle effects, processes are possible which can be interpreted as particle creation and annihilation due to in-medium one meson exchange. In-medium cross sections are obtained from the generalized derivation of collision integrals, which possess complete crossing symmetries.Comment: See nucl-th/9310032 for revised version which the authors incompetently resubmitted rather than correctly replacing thi

    2PI Effective Action and Evolution Equations of N = 4 super Yang-Mills

    Full text link
    We employ nPI effective action techniques to study N = 4 super Yang-Mills, and write down the 2PI effective action of the theory. We also supply the evolution equations of two-point correlators within the theory.Comment: 16 pages, 6 figures. Figure 2 replaced, approximation scheme clarified, references adde

    Thermodynamics of the PNJL model

    Get PDF
    QCD thermodynamics is investigated by means of the Polyakov-loop-extended Nambu Jona-Lasinio (PNJL) model, in which quarks couple simultaneously to the chiral condensate and to a background temporal gauge field representing Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of temperature is obtained by minimizing the thermodynamic potential of the system. A Taylor series expansion of the pressure is performed. Pressure difference and quark number density are then evaluated up to sixth order in quark chemical potential, and compared to the corresponding lattice data. The validity of the Taylor expansion is discussed within our model, through a comparison between the full results and the truncated ones.Comment: 6 pages, 5 figures, Talk given at the Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2006), Villasimius, Italy, 15-20 May 200

    Charmless Exclusive Baryonic B Decays

    Full text link
    We present a systematical study of two-body and three-body charmless baryonic B decays. Branching ratios for two-body modes are in general very small, typically less than 10610^{-6}, except that \B(B^-\to p \bar\Delta^{--})\sim 1\times 10^{-6}. In general, BˉNΔˉ>BˉNNˉ\bar B\to N\bar\Delta>\bar B\to N\bar N due to the large coupling constant for ΣbBΔ\Sigma_b\to B\Delta. For three-body modes we focus on octet baryon final states. The leading three-dominated modes are Bˉ0pnˉπ(ρ),npˉπ+(ρ+)\bar B^0\to p\bar n\pi^-(\rho^-), n\bar p\pi^+(\rho^+) with a branching ratio of order 3×1063\times 10^{-6} for Bˉ0pnˉπ\bar B^0\to p\bar n\pi^- and 8×1068\times 10^{-6} for Bˉ0pnˉρ\bar B^0\to p\bar n\rho^-. The penguin-dominated decays with strangeness in the meson, e.g., BppˉK()B^-\to p\bar p K^{-(*)} and Bˉ0pnˉK(),nnˉKˉ0()\bar B^0\to p\bar n K^{-(*)}, n\bar n \bar K^{0(*)}, have appreciable rates and the NNˉN\bar N mass spectrum peaks at low mass. The penguin-dominated modes containing a strange baryon, e.g., Bˉ0Σ0pˉπ+,Σnˉπ+\bar B^0\to \Sigma^0\bar p\pi^+, \Sigma^-\bar n\pi^+, have branching ratios of order (14)×106(1\sim 4)\times 10^{-6}. In contrast, the decay rate of Bˉ0Λpˉπ+\bar B^0\to\Lambda\bar p\pi^+ is smaller. We explain why some of charmless three-body final states in which baryon-antibaryon pair production is accompanied by a meson have a larger rate than their two-body counterparts: either the pole diagrams for the former have an anti-triplet bottom baryon intermediate state, which has a large coupling to the BB meson and the nucleon, or they are dominated by the factorizable external WW-emission process.Comment: 46 pages and 3 figures, to appear in Phys. Rev. D. Major changes are: (i) Calculations of two-body baryonic B decays involving a Delta resonance are modified, and (ii) Penguin-dominated modes B-> Sigma+N(bar)+p are discusse
    corecore