211,646 research outputs found

    Engineering the accurate distortion of an object's temperature-distribution signature

    Full text link
    It is up to now a challenge to control the conduction of heat. Here we develop a method to distort the temperature distribution signature of an object at will. As a result, the object accurately exhibits the same temperature distribution signature as another object that is predetermined, but actually does not exist in the system. Our finite element simulations confirm the desired effect for different objects with various geometries and compositions. The underlying mechanism lies in the effects of thermal metamaterials designed by using this method. Our work is of value for applications in thermal engineering.Comment: 11 pages, 4 figure

    Critical behaviours of contact near phase transitions

    Get PDF
    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy, and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviors, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviors in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition.Comment: Final version published in Nat. Commun. 5:5140 doi: 10.1038/ncomms6140 (2014

    Perturbation theory of von Neumann Entropy

    Full text link
    In quantum information theory, von Neumann entropy plays an important role. The entropies can be obtained analytically only for a few states. In continuous variable system, even evaluating entropy numerically is not an easy task since the dimension is infinite. We develop the perturbation theory systematically for calculating von Neumann entropy of non-degenerate systems as well as degenerate systems. The result turns out to be a practical way of the expansion calculation of von Neumann entropy.Comment: 7 page

    Orbital and Pauli limiting effects in heavily doped Ba1x_{1-x}Kx_xFe2_2As2_2

    Full text link
    We investigated the thermodynamic properties of the Fe-based lightly disordered superconductor Ba0.05_{0.05}K0.95_{0.95}Fe2_2As2_2 in external magnetic field H applied along the FeAs layers (H//ab planes). The superconducting (SC) transition temperature for this doping level is Tc_c = 6.6 K. Our analysis of the specific heat C(T,H) measured for T < Tc_c implies a sign change of the superconducting order parameter across different Fermi pockets. We provide experimental evidence for the three components superconducting order parameter. We find that all three components have values which are comparable with the previously reported ones for the stochiometric compound KFe2_2As2_2. Our data for C(T,H) and resistivity rho(T,H) can be interpreted in favor of the dominant orbital contribution to the pair-breaking mechanism at low fields, while Pauli limiting effect dominates at high fields, giving rise to a gapless superconducting state with only the leading non-zero gap.Comment: 7 pages, 5 figure
    corecore