5,216 research outputs found

    Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites

    Get PDF
    Nonlinear-elastic fracture mechanics methods are used to assess the fracture toughness of bulk metallic glass (BMG) composites; results are compared with similar measurements for other monolithic and composite BMG alloys. Mechanistically, plastic shielding gives rise to characteristic resistance-curve behavior where the fracture resistance increases with crack extension. Specifically, confinement of damage by second-phase dendrites is shown to result in enhancement of the toughness by nearly an order of magnitude relative to unreinforced glass

    Interplay between carrier and impurity concentrations in annealed Ga1x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Putative spin liquid in the triangle-based iridate Ba3_3IrTi2_2O9_9

    Full text link
    We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba3_3IrTi2_2O9_9, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the TT-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the 4d4d isostructural compound Ba3_3RuTi2_2O9_9 suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte

    Inhomogeneous Low Frequency Spin Dynamics in La_{1.65}Eu_{0.2}Sr_{0.15}CuO_4

    Full text link
    We report Cu and La nuclear magnetic resonance (NMR) measurements in the title compound that reveal an inhomogeneous glassy behavior of the spin dynamics. A low temperature peak in the La spin lattice relaxation rate and the ``wipeout'' of Cu intensity both arise from these slow electronic spin fluctuations that reveal a distribution of activation energies. Inhomogeneous slowing of spin fluctuations appears to be a general feature of doped lanthanum cuprate.Comment: 4 pages, 2 figures. Very slight modifications to figure

    On the thickness uniformity of micropatterns of hyaluronic acid in a soft lithographic molding method

    Get PDF
    A soft lithographic molding is a simple and yet robust method for fabricating well-defined microstructures of a hydrophilic biopolymer such as polyethylene glycol and polysaccharide over a large area. The method consists of three steps: placing a polydimethylsiloxane mold with a bas-relief pattern onto a drop-dispensed polymer solution typically dissolved in water, letting the mold and the solution undisturbed in contact until solvent evaporates completely, and leaving behind a polymer replica after mold removal. In such a molding process, water can only evaporate from the edges of the mold due to impermeable nature of polydimethylsiloxane to water, resulting in a nonuniform distribution of film thickness or pattern height. Here we examine systematically how the evaporation rate affects the thickness distribution of the resulting microstructures by evaporating the solution of hyaluronic acid in various conditions. To compare with a theory, we also present a simple theoretical model based on one-dimensional conservation equation for a liquid film, which is in good agreement with the experimental data. (C) 2005 American Institute of Physicsclose4

    Study of the neutron star structure in strong magnetic fields including the anomalous magnetic moments

    Full text link
    We study the effects of strong magnetic fields on the neutron star structure. If the interior field of a star is on the same order of the surface field currently observed, the influences of the magnetic field on the star mass and radius are negligible. If one assumes that the internal magnetic field can be as large as that estimated from the scalar virial theorem, considerable effects can be induced. The maximum mass of stars is arisen substantially while the central density is largely suppressed. For two equal-mass stars the radius of the magnetic star can be larger by about 10% \sim 20% than the nonmagnetic star.Comment: 26 pages, 5 postscript figures; replaced by the revised version, Chin. J. Astron. Astrophys., accepte
    corecore