96,275 research outputs found

    Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum

    Full text link
    We study weakly-bound deformed nuclei based on the coordinate-space Skyrme Hartree-Fock-Bogoliubov approach, in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in 38^{38}Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in 110^{110}Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.Comment: 5 pages and 5 figure

    The perfect spin injection in silicene FS/NS junction

    Full text link
    We theoretically investigate the spin injection from a ferromagnetic silicene to a normal silicene (FS/NS), where the magnetization in the FS is assumed from the magnetic proximity effect. Based on a silicene lattice model, we demonstrated that the pure spin injection could be obtained by tuning the Fermi energy of two spin species, where one is in the spin orbit coupling gap and the other one is outside the gap. Moreover, the valley polarity of the spin species can be controlled by a perpendicular electric field in the FS region. Our findings may shed light on making silicene-based spin and valley devices in the spintronics and valleytronics field.Comment: 6 pages, 3 figure

    Integer quantum Hall effect and topological phase transitions in silicene

    Full text link
    We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0,±2,±6,,\nu=0,\pm2,\pm6,\ldots, and a conventional QHE near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center, in which higher plateaus disappear first. However, the center ν=0\nu=0 Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase transitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by additional quantum Hall conductivity plateaus.Comment: 7 pages, 4 figure

    The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data

    Get PDF
    We develop a general form logarithmic vector multiplicative error model (log-vMEM). The log-vMEM improves on existing models in two ways. First, it is a more general form model as it allows the error terms to be cross-dependent and relaxes weak exogeneity restrictions. Second, the log-vMEM specification guarantees that the conditional means are non-negative without any restrictions imposed on the parameters. We further propose a multivariate lognormal distribution and a joint maximum likelihood estimation strategy. The model is applied to high frequency data associated with a number of NYSE-listed stocks. The results reveal empirical support for full interdependence of trading duration, volume and volatility, with the log-vMEM providing a better fit to the data than a competing model. Moreover, we find that unexpected duration and volume dominate observed duration and volume in terms of information content, and that volatility and volatility shocks affect duration in different directions. These results are interpreted with reference to extant microstructure theory

    Odd-even mass staggering with Skyrme-Hartree-Fock-Bogoliubov theory

    Full text link
    We have studied odd-even nuclear mass staggering with the Skyrme-Hartree-Fock-Bogoliubov theory by employing isoscalar and isovector contact pairing interactions. By reproducing the empirical odd-even mass differences of the Sn isotopic chain, the strengths of pairing interactions are determined. The optimal strengths adjusted in this work can give better description of odd-even mass differences than that fitted by reproducing the experimental neutron pairing gap of 120^{120}Sn.Comment: 9 pages, 3 figures, submitted to PRC Brief Repor

    Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems: II. Dipole-dipole versus current-current correlations

    Full text link
    Based on Takayama-Lin-Liu-Maki model, analytical expressions for the third-harmonic generation, DC Kerr effect, DC-induced second harmonic optical Kerr effect, optical Kerr effect or intensity-dependent index of refraction and DC-electric-field-induced optical rectification are derived under the static current-current(J0J0J_0J_0) correlation for one-dimensional infinite chains. The results of hyperpolarizabilities under J0J0J_0J_0 correlation are then compared with those obtained using the dipole-dipole (DDDD) correlation. The comparison shows that the conventional J0J0J_0J_0 correlation, albeit quite successful for the linear case, is incorrect for studying the nonlinear optical properties of periodic systems.Comment: 11 pages, 5 figure
    corecore