2,393 research outputs found
Ferromagnetism in 2p Light Element-Doped II-oxide and III-nitride Semiconductors
II-oxide and III-nitride semiconductors doped by nonmagnetic 2p light
elements are investigated as potential dilute magnetic semiconductors (DMS).
Based on our first-principle calculations, nitrogen doped ZnO, carbon doped
ZnO, and carbon doped AlN are predicted to be ferromagnetic. The ferromagnetism
of such DMS materials can be attributed to a p-d exchange-like p-p coupling
interaction which is derived from the similar symmetry and wave function
between the impurity (p-like t_2) and valence (p) states. We also propose a
co-doping mechanism, using beryllium and nitrogen as dopants in ZnO, to enhance
the ferromagnetic coupling and to increase the solubility and activity
Persistent Current From the Competition Between Zeeman Coupling and Spin-Orbit Interaction
Applying the non-adiabatic Aharonov-Anandan phase approach to a mesoscopic
ring with non-interacting many electrons in the presence of the spin-orbit
interaction, Zeeman coupling and magnetic flux, we show that the time-reversal
symmetry breaking due to Zeeman coupling is intrinsically different from that
due to magnetic flux. We find that the direction of the persistent currents
induced by the Zeeman coupling changes periodically with the particle number,
while the magnetic flux determines the direction of the induced currents by its
sign alone.Comment: 5 pages, ReVTeX, including 3 figures on request,Submitted to
Phys.Rev.Let
Aharonov-Anandan Effect Induced by Spin-Orbit Interaction and Charge-Density-Waves in Mesoscopic Rings
We study the spin-dependent geometric phase effect in mesoscopic rings of
charge-density-wave(CDW) materials. When electron spin is explicitly taken into
account, we show that the spin-dependent Aharonov-Casher phase can have a
pronounced frustration effects on such CDW materials with appropriate electron
filling. We show that this frustration has observable consequences for
transport experiment. We identify a phase transition from a Peierls insulator
to metal, which is induced by spin-dependent phase interference effects.
Mesoscopic CDW materials and spin-dependent geometric phase effects, and their
interplay, are becoming attractive opportunities for exploitation with the
rapid development of modern fabrication technology.Comment: 5 pages, 6 figures, to appear in Phys.Rev.B(Aug.15, 1998
Spin Precession and Time-Reversal Symmetry Breaking in Quantum Transport of Electrons Through Mesoscopic Rings
We consider the motion of electrons through a mesoscopic ring in the presence
of spin-orbit interaction, Zeeman coupling, and magnetic flux. The coupling
between the spin and the orbital degrees of freedom results in the geometric
and the dynamical phases associated with a cyclic evolution of spin state.
Using a non-adiabatic Aharonov-Anandan phase approach, we obtain the exact
solution of the system and identify the geometric and the dynamical phases for
the energy eigenstates. Spin precession of electrons encircling the ring can
lead to various interference phenomena such as oscillating persistent current
and conductance. We investigate the transport properties of the ring connected
to current leads to explore the roles of the time-reversal symmetry and its
breaking therein with the spin degree of freedom being fully taken into
account. We derive an exact expression for the transmission probability through
the ring. We point out that the time-reversal symmetry breaking due to Zeeman
coupling can totally invalidate the picture that spin precession results in
effective, spin-dependent Aharonov-Bohm flux for interfering electrons.
Actually, such a picture is only valid in the Aharonov-Casher effect induced by
spin-orbit interaction only. Unfortunately, this point has not been realized in
prior works on the transmission probability in the presence of both SO
interaction and Zeeman coupling. We carry out numerical computation to
illustrate the joint effects of spin-orbit interaction, Zeeman coupling and
magnetic flux. By examining the resonant tunneling of electrons in the weak
coupling limit, we establish a connection between the observable time-reversal
symmetry breaking effects manifested by the persistent current and by the
transmission probability. For a ring formed by two-dimensional electron gas, weComment: 20 pages, 5 figure
A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6
The invention of the "dual resonance model" N-point functions BN motivated
the development of current string theory. The simplest of these models, the
four-point function B4, is the classical Euler Beta function. Many standard
methods of complex analysis in a single variable have been applied to elucidate
the properties of the Euler Beta function, leading, for example, to analytic
continuation formulas such as the contour-integral representation obtained by
Pochhammer in 1890. Here we explore the geometry underlying the dual five-point
function B5, the simplest generalization of the Euler Beta function. Analyzing
the B5 integrand leads to a polyhedral structure for the five-crosscap surface,
embedded in RP5, that has 12 pentagonal faces and a symmetry group of order 120
in PGL(6). We find a Pochhammer-like representation for B5 that is a contour
integral along a surface of genus five. The symmetric embedding of the
five-crosscap surface in RP5 is doubly covered by a symmetric embedding of the
surface of genus four in R6 that has a polyhedral structure with 24 pentagonal
faces and a symmetry group of order 240 in O(6). The methods appear
generalizable to all N, and the resulting structures seem to be related to
associahedra in arbitrary dimensions.Comment: 43 pages and 44 figure
The fermi arc and fermi pocket in cuprates in a short-range diagonal stripe phase
In this paper we studied the fermi arc and the fermi pocket in cuprates in a
short-range diagonal stripe phase with wave vectors , which
reproduce with a high accuracy the positions and sizes of the fermi arc and
fermi pocket and the superstructure in cuprates observed by Meng et
al\cite{Meng}. The low-energy spectral function indicates that the fermi pocket
results from the main band and the shadow band at the fermi energy. Above the
fermi energy the shadow band gradually departs away from the main band, leaving
a fermi arc. Thus we conclude that the fermi arc and fermi pocket can be fully
attributed to the stripe phase but has nothing to do with pairing.
Incorporating a d-wave pairing potential in the stripe phase the spectral
weight in the antinodal region is removed, leaving a clean fermi pocket in the
nodal region.Comment: 5 pages, 6 figure
Crystal growth of selected II-VI semiconducting alloys by directional solidification
A Hg(0.84)Zn(0.16)Te alloy crystal was back-melted and partially resolidified during the first United States Microgravity Laboratory (USML-1) mission in the Marshall Space Flight Center's Crystal Growth Furnace. The experiment was inadvertently terminated at about 30% of planned completion. Nonetheless, it was successfully demonstrated that HgZnTe alloy ingots partially grown and quenched on the ground can be back-melted and regrown in space under nearly steady state growth conditions. An identical 'ground-truth' experiment was performed following the mission. Preliminary results are presented for both crystals, as well as for a series of other crystals grown prior to the mission for the purposes of optimizing in-flight growth conditions
Imaging and Dynamics of Light Atoms and Molecules on Graphene
Observing the individual building blocks of matter is one of the primary
goals of microscopy. The invention of the scanning tunneling microscope [1]
revolutionized experimental surface science in that atomic-scale features on a
solid-state surface could finally be readily imaged. However, scanning
tunneling microscopy has limited applicability due to restrictions, for
example, in sample conductivity, cleanliness, and data aquisition rate. An
older microscopy technique, that of transmission electron microscopy (TEM) [2,
3] has benefited tremendously in recent years from subtle instrumentation
advances, and individual heavy (high atomic number) atoms can now be detected
by TEM [4 - 7] even when embedded within a semiconductor material [8, 9].
However, detecting an individual low atomic number atom, for example carbon or
even hydrogen, is still extremely challenging, if not impossible, via
conventional TEM due to the very low contrast of light elements [2, 3, 10 -
12]. Here we demonstrate a means to observe, by conventional transmision
electron microscopy, even the smallest atoms and molecules: On a clean
single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon
can be seen as if they were suspended in free space. We directly image such
individual adatoms, along with carbon chains and vacancies, and investigate
their dynamics in real time. These techniques open a way to reveal dynamics of
more complex chemical reactions or identify the atomic-scale structure of
unknown adsorbates. In addition, the study of atomic scale defects in graphene
may provide insights for nanoelectronic applications of this interesting
material.Comment: 9 pages manuscript and figures, 9 pages supplementary informatio
The Incremental Cooperative Design of Preventive Healthcare Networks
This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe
- …