11,669 research outputs found
Marginalized average attentional network for weakly-supervised learning
© 7th International Conference on Learning Representations, ICLR 2019. All Rights Reserved. In weakly-supervised temporal action localization, previous works have failed to locate dense and integral regions for each entire action due to the overestimation of the most salient regions. To alleviate this issue, we propose a marginalized average attentional network (MAAN) to suppress the dominant response of the most salient regions in a principled manner. The MAAN employs a novel marginalized average aggregation (MAA) module and learns a set of latent discriminative probabilities in an end-to-end fashion. MAA samples multiple subsets from the video snippet features according to a set of latent discriminative probabilities and takes the expectation over all the averaged subset features. Theoretically, we prove that the MAA module with learned latent discriminative probabilities successfully reduces the difference in responses between the most salient regions and the others. Therefore, MAAN is able to generate better class activation sequences and identify dense and integral action regions in the videos. Moreover, we propose a fast algorithm to reduce the complexity of constructing MAA from O(2T) to O(T2). Extensive experiments on two large-scale video datasets show that our MAAN achieves a superior performance on weakly-supervised temporal action localization
Differential expression, localization and activity of two alternatively spliced isoforms of human APC regulator CDH1
The timely destruction of key regulators through ubiquitin-mediated proteolysis ensures the orderly progression of the cell cycle. The APC (anaphase-promoting complex) is a major component of this degradation machinery and its activation is required for the execution of critical events. Recent studies have just begun to reveal the complex control of the APC through a regulatory network involving WD40 repeat proteins CDC20 and CDH1. In the present paper, we report on the identification and characterization of human CDH1β, a novel alternatively spliced isoform of CDH1. Both CDH1α and CDH1β can bind to the APC and stimulate the degradation of cyclin B1, but they are differentially expressed in human tissues and cells. CDH1α contains a nuclear localization signal which is absent in CDH1β. Intracellularly, CDH1α appears in the nucleus whereas CDH1β is a predominantly cytoplasmic protein. The forced overexpression of CDH1α in cultured cells correlates with the reduction of nuclear cyclin A, but the steady-state amount of cyclin A does not change noticeably in CDH1β-overexpressed cells. In Xenopus embryos, ectopic overexpression of human CDH1α, but not of CDH1β, induces cell-cycle arrest during the first G1 phase at the midblastula transition. Taken together, our findings document the differential expression, subcellular localization and cell-cycle-regulatory activity of human CDH1 isoforms.postprin
Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS2
2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe
Coiled-coil motif as a structural basis for the interaction of HTLV type 1 Tax with cellular cofactors
Human T lymphotropic virus type 1 (HTLV-1) Tax is a multifunctional protein centrally involved in transcriptional regulation, cell cycle control, and viral transformation. The regulatory functions of Tax are thought to be mediated through protein-protein interaction with cellular cofactors. Previously we have identified several novel binding partners for Tax, including human mitotic checkpoint protein MAD1 (TXBP181), G-protein pathway suppressor GPS2 (TXBP31), and IκB kinase regulatory subunit IKK-γ. Here we described two additional Tax partners, TXBP151 and TXBP121. A closer examination of the sequences of eight independent cellular Tax-binding proteins identified by us and others revealed that all of them share a single characteristic, a highly structured coiled-coil domain. We also noted that Tax and the Tax-binding coiled-coil proteins can homodimerize. Additionally, the same domain in Tax is responsible for interaction with different coiled-coil proteins. Taken together, our findings point to a particular coiled-coil structure as one of the Tax-recognition motifs. The interaction of Tax with a particular subgroup of cellular coiled-coil proteins represents one mechanism by which Tax dysregulates cell growth and proliferation.published_or_final_versio
Ubiquitination and proteosome-dependent degradation of the activated form of human liver-enriched transcription factor CREB-H regulated by protein kinase A
Poster Presentation - Theme 1: Cell biologyCREB-H is a membrane-bound bZIP transcription factor which is mainly expressed in liver and small intestine. CREB-H plays important roles in the regulation of lipid metabolism, iron metabolism, gluconeogenesis and acute phase response. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminal truncated form known as ...postprin
Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure
Nanoscale devices, such as all-optical modulators and electro-optical transducers, can be implemented in heterostructures that integrate plasmonic nanostructures with functional active materials. Here we demonstrate all-optical control of a nanoscale memory effect in such a heterostructure by coupling the localized surface plasmon resonance (LSPR) of gold nanodisk arrays to a phase-changing material (PCM), vanadium dioxide (VO<inf>2</inf>). By latching the VO<inf>2</inf> in a distinct correlated metallic state during the insulator-to-metal transition (IMT), while concurrently exciting the hybrid nanostructure with one or more ultraviolet optical pulses, the entire phase space of this correlated state can be accessed optically to modulate the plasmon response. We find that the LSPR modulation depends strongly but linearly on the initial latched state, suggesting that the memory effect encoded in the plasmon resonance wavelength is linked to the strongly correlated electron states of the VO<inf>2</inf>. The continuous, linear variation of the electronic and optical properties of these model heterostructures opens the way to multiple design strategies for hybrid devices with novel optoelectronic functionalities, which can be controlled by an applied electric or optical field, strain, injected charge, or temperature.Department of Applied Physic
Haloalkaliphilic spore-forming sulfidogens from soda lake sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov.
An anaerobic enrichment with pyruvate as electron donor and thiosulfate at pH 10 and 0.6 M Na+ inoculated with pasteurized soda lake sediments resulted in a sulfidogenic coculture of two morphotypes of obligately anaerobic haloalkaliphilic endospore-forming clostridia, which were further isolated in pure culture. Strain AHT16 was a thin long rod able to ferment sugars and pyruvate and to respire H2, formate and pyruvate using thiosulfate and fumarate as electron acceptors and growing optimally at pH 9.5. Thiosulfate was reduced incompletely to sulfide and sulfite. The strain was closely related (99% sequence similarity) to a peptolytic alkaliphilic clostridium Natronincola peptidovorans. Strain AHT17 was a short rod with a restricted respiratory metabolism, growing with pyruvate and lactate as electron donor and sulfite, thiosulfate and elemental sulfur as electron acceptors with a pH optimum 9.5. Thiosulfate was reduced completely via sulfite to sulfide. The ability of AHT17 to use sulfite explained the stability of the original coculture of the two clostridia—one member forming sulfite from thiosulfate and another consuming it. Strain AHT17 formed an independent deep phylogenetic lineage within the Clostridiales and is proposed as a new genus and species Desulfitisporum alkaliphilum gen. nov., sp. nov. (=DSM 22410T = UNIQEM U794T)
Investigation of the Kuroshio-coastal current interaction and marine heatwave trends in the coral habitats of Northeastern Taiwan
\ua9 2024 Elsevier B.V.The continually rising concentration of the surface aqueous partial pressure of carbon dioxide has led to sustained ocean acidification and increased sea surface temperature (SST) in the coral habitats of northeastern Taiwan. Since 2016, this region has been experiencing intense marine heatwave (MHW) events, with the accumulated thermal stress reaching its peak between 2020 and 2022. Apart from the attributing factor of the increasing atmospheric carbon dioxide concentration, the Kuroshio (KC) path along the eastern coast of Taiwan has exhibited a westward tendency towards the coast of Taiwan from October to April. The westward and northward components of the KC\u27s branch into the East China Sea (ECS) shelf have rapidly increased. The interplay between the KC and the northeastern Taiwan coastal countercurrent (NETCC) near the coral habitats has formed a counterclockwise circulation, which continues to show a westward trend. This has resulted in the influx of warmer waters into northeastern Taiwan. On another note, the pronounced negative phase of the Pacific decadal oscillation (PDO) and La Ni\uf1a conditions from 2020 to 2022 have further contributed to the increased SST, with the average MHW event accumulating to 172 days annually. The coral bleaching index, degree heating week (DHW), indicates that 2020 was historically the first year for this region to experience a DHW exceeding 8\ub0C-weeks, reaching an Alert Level 2 for bleaching, and 2022 saw even more severe conditions with an average of 12 days at this level. With a reduced number of typhoon incursions in recent years in northeastern Taiwan, and the absence of periodic cold waters to mitigate the heat, the future marine environment of the coral habitats in this region is of significant concern
Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes
Anaerobic enrichment cultures with elemental sulfur as electron acceptor and either acetate or propionate as electron donor and carbon source at pH 10 and moderate salinity inoculated with sediments from soda lakes in Kulunda Steppe (Altai, Russia) resulted in the isolation of two novel members of the bacterial phylum Chrysiogenetes. The isolates, AHT11 and AHT19, represent the first specialized obligate anaerobic dissimilatory sulfur respirers from soda lakes. They use either elemental sulfur/polysulfide or arsenate as electron acceptor and a few simple organic compounds as electron donor and carbon source. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while arsenate is reduced to arsenite. The bacteria belong to the obligate haloalkaliphiles, with a pH growth optimum from 10 to 10.2 and a salt range from 0.2 to 3.0 M Na+ (optimum 0.4–0.6 M). According to the phylogenetic analysis, the two strains were close to each other, but distinct from the nearest relative, the haloalkaliphilic sulfur-reducing bacterium Desulfurispirillum alkaliphilum, which was isolated from a bioreactor. On the basis of distinct phenotype and phylogeny, the soda lake isolates are proposed as a new genus and species, Desulfurispira natronophila (type strain AHT11T = DSM22071T = UNIQEM U758T)
Significance of MAD2 expression in mitotic checkpoint control and cellular sensitivity in nasopharyngeal carcinoma cells
published_or_final_versio
- …