6,779 research outputs found
On the extrapolation to ITER of discharges in present tokamaks
An expression for the extrapolated fusion gain G = Pfusion /5 Pheat (Pfusion
being the total fusion power and Pheat the total heating power) of ITER in
terms of the confinement improvement factor (H) and the normalised beta (betaN)
is derived in this paper. It is shown that an increase in normalised beta can
be expected to have a negative or neutral influence on G depending on the
chosen confinement scaling law. Figures of merit like H betaN / q95^2 should be
used with care, since large values of this quantity do not guarantee high
values of G, and might not be attainable with the heating power installed on
ITER.Comment: 6 Pages, 3 figures, Submitted to Nuclear Fusion on the 29th of
November 200
Comparative study on microstructure and surface properties of keratin- and lignocellulosic-based activated carbons
© 2015 Elsevier B.V. All rights reserved. The paper probed the preparation of activated carbon by potassium silicate (K2SiO3) activation from keratin waste (cowhair waste, CW) and lignocellulosic materials (Cyperus alternifolius, CA) and the comparisons of physicochemical properties of the resulting carbons. These impregnation conditions were as follows: one impregnated at room temperature for 12 h then dipped at high temperature for 30 min; the other was only impregnated at room temperature for 12 h, producing four activated carbons CWAC-1, CWAC-2, CAAC-1, and CAAC-2. The influence of activation time, K2SiO3/precursor weight ratio, and the pre-process on properties of activated carbons was discussed. The CWAC-1 produced at 700°C with the K2SiO3/precursor weight ratio of 2:1 possessed the Brunauer-Emmet-Teller (BET) surface area of 1965 m2/g and total pore volume of 1.345 cm3/g, while CAAC-1 prepared at the same conditions attained the BET surface area of 1710 m2/g and total pore volume of 0.949 cm3/g. The surface area and total pore volume of CAAC increased with the impregnation ratio. Moreover, CWAC-1, CWAC-2, CAAC-1, and CAAC-2 exhibited high portion of micropores, illustrating the role of K2SiO3. The analysis with a Fourier transform infrared spectrometer indicates that CWAC has more functional groups than CAAC, as well as CWAC-1 and CWAC-2 which possess similar functional groups
The CKM Matrix and The Unitarity Triangle: Another Look
The unitarity triangle can be determined by means of two measurements of its
sides or angles. Assuming the same relative errors on the angles
and the sides , we find that the pairs
and are most efficient in determining
that describe the apex of the unitarity triangle. They
are followed by , , ,
and . As the set \vus, \vcb, and appears to be
the best candidate for the fundamental set of flavour violating parameters in
the coming years, we show various constraints on the CKM matrix in the
plane. Using the best available input we determine the universal
unitarity triangle for models with minimal flavour violation (MFV) and compare
it with the one in the Standard Model. We present allowed ranges for , , , , and within the
Standard Model and MFV models. We also update the allowed range for the
function that parametrizes various MFV-models.Comment: "published version. few typos corrected, results unchanged
Kernelization and Parameterized Algorithms for 3-Path Vertex Cover
A 3-path vertex cover in a graph is a vertex subset such that every path
of three vertices contains at least one vertex from . The parameterized
3-path vertex cover problem asks whether a graph has a 3-path vertex cover of
size at most . In this paper, we give a kernel of vertices and an
-time and polynomial-space algorithm for this problem, both new
results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201
The nature of localization in graphene under quantum Hall conditions
Particle localization is an essential ingredient in quantum Hall physics
[1,2]. In conventional high mobility two-dimensional electron systems Coulomb
interactions were shown to compete with disorder and to play a central role in
particle localization [3]. Here we address the nature of localization in
graphene where the carrier mobility, quantifying the disorder, is two to four
orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density
of states and the localized state spectrum of a graphene flake in the quantum
Hall regime with a scanning single electron transistor [11]. Our microscopic
approach provides direct insight into the nature of localization. Surprisingly,
despite strong disorder, our findings indicate that localization in graphene is
not dominated by single particle physics, but rather by a competition between
the underlying disorder potential and the repulsive Coulomb interaction
responsible for screening.Comment: 18 pages, including 5 figure
Electronic structures of free-standing nanowires made from indirect bandgap semiconductor gallium phosphide
We present a theoretical study of the electronic structures of freestanding
nanowires made from gallium phosphide (GaP)--a III-V semiconductor with an
indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and
rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal
cross sections. Based on tight binding models, both the band structures and
wave functions of the nanowires are calculated. For the [001]-oriented GaP
nanowires, the bands show anti-crossing structures, while the bands of the
[111]-oriented nanowires display crossing structures. Two minima are observed
in the conduction bands, while the maximum of the valence bands is always at
the -point. Using double group theory, we analyze the symmetry
properties of the lowest conduction band states and highest valence band states
of GaP nanowires with different sizes and directions. The band state wave
functions of the lowest conduction bands and the highest valence bands of the
nanowires are evaluated by spatial probability distributions. For practical
use, we fit the confinement energies of the electrons and holes in the
nanowires to obtain an empirical formula.Comment: 19 pages, 10 figure
Warped Higgsless Models with IR--Brane Kinetic Terms
We examine a warped Higgsless model
in 5-- with IR(TeV)--brane kinetic terms. It is shown that adding a brane
term for the gauge field does not affect the scale (
TeV) where perturbative unitarity in is violated.
This term could, however, enhance the agreement of the model with the precision
electroweak data. In contrast, the inclusion of a kinetic term corresponding to
the custodial symmetry of the theory delays the unitarity violation
in scattering to energy scales of TeV for a significant
fraction of the parameter space. This is about a factor of 4 improvement
compared to the corresponding scale of unitarity violation in the Standard
Model without a Higgs. We also show that null searches for extra gauge bosons
at the Tevatron and for contact interactions at LEP II place non-trivial bounds
on the size of the IR-brane terms.Comment: 23 pages, 8 figure
The Physics of Heavy Flavours at SuperB
This is a review of the SuperB project, covering the accelerator, detector,
and highlights of the broad physics programme. SuperB is a flavour factory
capable of performing precision measurements and searches for rare and
forbidden decays of , , and
particles. These results can be used to test fundamental symmetries and
expectations of the Standard Model, and to constrain many different
hypothesised types of new physics. In some cases these measurements can be used
to place constraints on the existence of light dark matter and light Higgs
particles with masses below . The potential impact of the
measurements that will be made by SuperB on the field of high energy physics is
also discussed in the context of data taken at both high energy in the region
around the \Upsilon({\mathrm{4S}})$, and near charm threshold.Comment: 49 pages, topical review submitted to J. Phys
- …
