259 research outputs found

    Control over phase separation and nucleation using a laser-tweezing potential

    Get PDF
    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter

    Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol

    Get PDF
    ?-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form ?-cholesterylglucoside (?-GlcChol) in vitro. ?-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate ?-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (?-GalChol), in addition to ?-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for ?-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for ?-GalChol formation. Liquid chromatography?tandem MS revealed that ?-GlcChol and ?-GalChol are present throughout development from embryo to adult in the mouse brain. We found that ?-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of ?-GalChol biosynthesis appeared to be during myelination. We also found that ?-GlcChol and ?-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form ?-GalChol. This is the first report of the existence of ?-GalChol in vertebrates and how ?-GlcChol and ?-GalChol are formed in the brain.Medical Biochemistr

    CD34+/M-cadherin+ Bone Marrow Progenitor Cells Promote Arteriogenesis in Ischemic Hindlimbs of ApoE−/− Mice

    Get PDF
    BACKGROUND: Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34⁺/M-cad⁺ BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34⁺/M-cad⁺ BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. METHODS AND FINDINGS: Colony-forming cell assays and flow cytometry analysis showed that CD34⁺/M-cad⁺ BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE⁻/⁻ mice, CD34⁺/M-cad⁺ BMCs alleviated ischemia and significantly improved blood flow compared with CD34⁺/M-cad⁻ BMCs, CD34⁻/M-cad⁺ BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34⁺/M-cad⁺ cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFP⁺ CD34⁺/M-cad⁺ cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP⁺ CD34⁺/M-cad⁺ cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34⁺/M-cad⁺ progenitor cells. A cytokine antibody array revealed that CD34⁺/M-cad⁺ cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34⁺/M-cad⁻ cell-conditioned medium. The proangiogenic cytokines secreted by CD34⁺/M-cad⁺ cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34⁺/M-cad⁻ cells during hypoxia. CONCLUSION: CD34⁺/M-cad⁺ BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE⁻/⁻ mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34⁺/M-cad⁺ BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors

    Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension

    Get PDF
    Background: Endothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension in rats. Methods: Monocrotaline-injected male Sprague-Dawley rats were randomized and treated orally from day 21 to 35 either with TBC3711 (Dose: 30 mg/kg body weight/day) or placebo. Echocardiographic measurements of different hemodynamic and right-heart hypertrophy parameters were performed. After day 35, rats were sacrificed for invasive hemodynamic and right-heart hypertrophy measurements. Additionally, histologic assessment of pulmonary vascular and right-heart remodelling was performed. Results: The novel endothelin-A receptor antagonist TBC3711 significantly attenuated monocrotaline-induced pulmonary hypertension, as evident from improved hemodynamics and right-heart hypertrophy in comparison with placebo group. In addition, muscularization and medial wall thickness of distal pulmonary vessels were ameliorated. The histologic evaluation of the right ventricle showed a significant reduction in fibrosis and cardiomyocyte size, suggesting an improvement in right-heart remodelling. Conclusion: The results of this study suggest that the selective endothelin-A receptor antagonist TBC3711 demonstrates therapeutic benefit in rats with established pulmonary hypertension, thus representing a useful therapeutic approach for treatment of pulmonary hypertension

    Pericardial Patch Angioplasty Heals via an Ephrin-B2 and CD34 Positive Cell Mediated Mechanism

    Get PDF
    Pericardial patches are commonly used in vascular surgery to close arteriotomies. The mechanism of early healing after patch implantation is still not well defined. We used a rat aortic patch model to assess pericardial patch healing and examined Ephrin-B2, a marker of arterial identity, expression within the post-implantation patch. We also determined whether endothelial progenitor cells (EPC) are associated with early patch healing in the arterial environment.Wistar rats (200-250 grams) underwent infrarenal aortic arteriotomy and then closure via bovine or porcine pericardial patch angioplasty. Control groups included subcutaneously implanted patches. Patches were harvested at 0-30 days and analyzed by histology, immunohistochemistry, immunofluorescence and Western blot as well as quantitative PCR.Prior to implantation, pericardial patches are largely composed of collagen and are acellular. Following arterial implantation, increasing numbers of CD68-positive cells as well as Ephrin-B2 and CD34 dual-positive cells are found within both bovine and porcine pericardial patches, whereas the infiltrating cells are negative for vWF and α-actin. Porcine patches have a luminal monolayer of cells at day 7, compared to bovine patches that have fewer luminal cells. Subcutaneously implanted patches do not attract Ephrin-B2/CD34-positive cells. By day 30, both bovine and porcine pericardial patches develop a neointima that contains Ephrin-B2, CD34, and VEGFR2-positive cells.Both CD68-positive and Ephrin-B2 and CD34 dual-positive cells infiltrate the pericardial patch early after implantation. Arteriotomy closure via pericardial patch angioplasty shows patch adaptation to the arterial environment that may involve a foreign body response as well as localization of EPC. Arterial remodeling of pericardial patches support endothelialization and may represent a paradigm of healing of scaffolds used for tissue engineering

    In Vivo Tracking of Transplanted Mononuclear Cells Using Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    Get PDF
    BACKGROUND: Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs. METHODS AND FINDINGS: The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of ¹¹¹In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1-2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs. CONCLUSIONS: The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150-175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications
    corecore