98,285 research outputs found

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments

    Get PDF
    Tribological problems and corrosion degradation have been recognized as essential risks for total joint replacements, especially for all-metal arthroplasty. Few studies have focused on the interactions between tribology and corrosion (tribocorrosion) for implant materials. This paper addresses the importance of understanding tribocorrosion and the evaluation of such materials in simulated biological environments. Due to the complex effect of proteins on tribocorrosion, which has been demonstrated in previous studies, this study focuses towards understanding the effects of amino acids as aspects of material degradation. Dulbecco’s Modified Eagle’s Medium (DMEM) is a cell culture solution. It contains comparable amount and types of amino acids to normal synovial fluid in human joints. 0.36% NaCl solution was employed to isolate the biological species. Three materials were tested; High carbon (HC) CoCrMo (contains 0.19% carbon), low carbon (LC) CoCrMo (widely used materials for total joint replacement) and stainless steel UNS S31603 (316L). Integrated electrochemical tests supported by measurement of friction and near surface chemical analysis were carried out to enable their tribocorrosion behaviour to be fully characterized. As a general conclusion, amino acids were found to react with materials under tribological contacts and form complex organometallic/oxides which lubricate the metallic sample surface. Tribocorrosion plays a very important role in material degradation in the studied environments. HC CoCrMo shows superior wear, corrosion and tribocorrosion resistance – the material characteristics and their effect on the different tribocorrosion processes are discussed

    |V_ub| and |V_cb|, Charm Counting and Lifetime Differences in Inclusive Bottom Hadron Decays

    Full text link
    Inclusive bottom hadron decays are analyzed based on the heavy quark effective field theory (HQEFT). Special attentions in this paper are paid to the b\to u transitions and nonspectator effects. As a consequence, the CKM quark mixing matrix elements |V_ub| and |V_cb| are reliably extracted from the inclusive semileptonic decays B\to X_u e \nu and B\to X_c e \nu. Various observables, such as the semileptonic branch ratio B_SL, the lifetime differences among B^-, B^0, B_s and \Lambda_b hadrons, the charm counting n_c, are predicted and found to be consistent with the present experimental data.Comment: 20 pages, Revtex, 4 figures and 2 table
    corecore