24,140 research outputs found

    Parity-Violating Nuclear Force as derived from QCD Sum Rules

    Full text link
    Parity-violating nuclear force, as may be accessed from parity violation studies in nuclear systems, represents an area of nonleptonic weak interactions which has been the subject of experimental investigations for several decades. In the simple meson-exchange picture, parity-violating nuclear force may be parameterized as arising from exchange of \pi, \rho, \omega, or other meson(s) with strong meson-nucleon coupling at one vertex and weak parity-violating meson-nucleon coupling at the other vertex. The QCD sum rule method allows for a fairly complicated, but nevertheless straightforward, leading-order loop-contribution determination of the various parity-violating MNN couplings starting from QCD (with the nontrivial vacuum) and Glashow-Salam-Weinberg electroweak theory. We continue our earlier investigation of parity-violating \pi NN coupling (by Henley, Hwang, and Kisslinger) to other parity-violating couplings. Our predictions are in reasonable overall agreement with the results estimated on phenomenological grounds, such as in the now classic paper of Desplanques, Donoghue, and Holstein (DDH), in the global experimental fit of Adelberger and Haxton (AH), or the effective field theory (EFT) thinking of Ramsey-Musolf and Page (RP).Comment: 17 pages, 5 figure

    Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations

    Full text link
    An algebraic structure related to discrete zero curvature equations is established. It is used to give an approach for generating master symmetries of first degree for systems of discrete evolution equations and an answer to why there exist such master symmetries. The key of the theory is to generate nonisospectral flows (Ī»t=Ī»l,lā‰„0)(\lambda_t=\lambda ^l, l\ge0) from the discrete spectral problem associated with a given system of discrete evolution equations. Three examples are given.Comment: 24 pages, LaTex, revise

    A cryogenic dc-dc power converter for a 100kW synchronous HTS generator at liquid nitrogen temperatures

    Get PDF
    A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the ā€˜coldā€™ rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (~20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converterā€™s switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation

    Super-soft symmetry energy encountering non-Newtonian gravity in neutron stars

    Full text link
    Considering the non-Newtonian gravity proposed in the grand unification theories, we show that the stability and observed global properties of neutron stars can not rule out the super-soft nuclear symmetry energies at supra-saturation densities. The degree of possible violation of the Inverse-Square-Law of gravity in neutron stars is estimated using an Equation of State (EOS) of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.Comment: Version accepted by Physical Review Letter

    Evolution of magnetic component in Yang-Mills condensate dark energy models

    Full text link
    The evolution of the electric and magnetic components in an effective Yang-Mills condensate dark energy model is investigated. If the electric field is dominant, the magnetic component disappears with the expansion of the Universe. The total YM condensate tracks the radiation in the earlier Universe, and later it becomes wyāˆ¼āˆ’1w_y\sim-1 thus is similar to the cosmological constant. So the cosmic coincidence problem can be avoided in this model. However, if the magnetic field is dominant, wy>1/3w_y>1/3 holds for all time, suggesting that it cannot be a candidate for the dark energy in this case.Comment: 12 pages, 4 figures, minor typos correcte

    Suppression of Superconducting Critical Current Density by Small Flux Jumps in MgB2MgB_2 Thin Films

    Full text link
    By doing magnetization measurements during magnetic field sweeps on thin films of the new superconductor MgB2MgB_2, it is found that in a low temperature and low field region small flux jumps are taking place. This effect strongly suppresses the central magnetization peak leading to reduced nominal superconducting critical current density at low temperatures. A borderline for this effect to occur is determined on the field-temperature (H-T) phase diagram. It is suggested that the small size of the flux jumps in films is due to the higher density of small defects and the relatively easy thermal diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure
    • ā€¦
    corecore