6 research outputs found

    Finite element modeling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy

    No full text
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-017-1438-8This paper discusses the finite element modeling of cracking in quasi-brittle materials. The problem is addressed via a mixed strain/displacement finite element formulation and an isotropic damage constitutive model. The proposed mixed formulation is fully general and is applied in 2D and 3D. Also, it is independent of the specific finite element discretization considered; it can be equally used with triangles/tetrahedra, quadrilaterals/hexahedra and prisms. The feasibility and accuracy of the method is assessed through extensive comparison with experimental evidence. The correlation with the experimental tests shows the capacity of the mixed formulation to reproduce the experimental crack path and the force–displacement curves with remarkable accuracy. Both 2D and 3D examples produce results consistent with the documented data. Aspects related to the discrete solution, such as convergence regarding mesh resolution and mesh bias, as well as other related to the physical model, like structural size effect and the influence of Poisson’s ratio, are also investigated. The enhanced accuracy of the computed strain field leads to accurate results in terms of crack paths, failure mechanisms and force displacement curves. Spurious mesh dependency suffered by both continuous and discontinuous irreducible formulations is avoided by the mixed FE, without the need of auxiliary tracking techniques or other computational schemes that alter the continuum mechanical problem.Peer ReviewedPostprint (author's final draft

    Organosilane polymer chemistry: A review

    No full text

    Simulation of the Mechanical Response of Thin-Ply Composites: From Computational Micro-Mechanics to Structural Analysis

    No full text

    Numerical Simulation of Fracking in Shale Rocks: Current State and Future Approaches

    No full text
    corecore