128 research outputs found

    Adiabatic times for Markov chains and applications

    Full text link
    We state and prove a generalized adiabatic theorem for Markov chains and provide examples and applications related to Glauber dynamics of Ising model over Z^d/nZ^d. The theorems derived in this paper describe a type of adiabatic dynamics for l^1(R_+^n) norm preserving, time inhomogeneous Markov transformations, while quantum adiabatic theorems deal with l^2(C^n) norm preserving ones, i.e. gradually changing unitary dynamics in C^n

    R-Current DIS on a Shock Wave: Beyond the Eikonal Approximation

    Get PDF
    We find the DIS structure functions at strong coupling by calculating R-current correlators on a finite-size shock wave using AdS/CFT correspondence. We improve on the existing results in the literature by going beyond the eikonal approximation for the two lowest orders in graviton exchanges. We argue that since the eikonal approximation at strong coupling resums integer powers of 1/x (with x the Bjorken-x variable), the non-eikonal corrections bringing in positive integer powers of x can not be neglected in the small-x limit, as the non-eikonal order-x correction to the (n+1)st term in the eikonal series is of the same order in x as the nth eikonal term in that series. We demonstrate that, in qualitative agreement with the earlier DIS analysis based on calculation of the expectation value of the Wilson loop in the shock wave background using AdS/CFT, after inclusion of non-eikonal corrections DIS structure functions are described by two momentum scales: Q_1^2 ~ \Lambda^2 \, A^{1/3}/x and Q_2^2 ~ \Lambda^2 \, A^{2/3}, where \Lambda is the typical transverse momentum in the shock wave and A is the atomic number if the shock wave represents a nucleus. We discuss possible physical meanings of the scales Q_1 and Q_2.Comment: 44 pages, 3 figures; v2: typos corrected, refs added, discussion extende

    Forward Quark Jets from Protons Shattering the Colored Glass

    Get PDF
    We consider the single-inclusive minijet cross section in pA at forward rapidity within the Color Glass Condensate model of high energy collisions. We show that the nucleus appears black to the incident quarks except for very large impact parameters. A markedly flatter p_t distribution as compared to QCD in the dilute perturbative limit is predicted for transverse momenta about the saturation scale, which could be as large as Q_s^2 ~ 10 GeV^2 for a gold nucleus boosted to rapidity ~10 (as at the BNL-RHIC).Comment: 9 pages, no figure

    Comparing AdS/CFT Calculations to HERA F_2 Data

    Get PDF
    We show that HERA data for the inclusive structure function F_2(x,Q^2) at small Bjorken-x and Q^2 can be reasonably well described by a color-dipole model with an AdS/CFT-inspired dipole-proton cross section. The model contains only three free parameters fitted to data. In our AdS/CFT-based parameterization the saturation scale varies in the range of 1-3 GeV becoming independent of energy/Bjorken-x at very small x. This leads to the prediction of x-independence of the F_2 and F_L structure functions at very small x. We provide predictions for F_2 and F_L in the kinematic regions of future experiments. We discuss the limitations of our approach and its applicability region, and argue that our AdS/CFT-based model of non-perturbative physics could be viewed as complimentary to the perturbative description of data based on saturation/Color Glass Condensate physics.Comment: 23 pages, 10 figures; v3: new plots added showing our model predictions for charm and longitudinal structure functions and photoproduction cross-section, discussion extended. The version to appear in PR

    The initial energy density of gluons produced in very high energy nuclear collisions

    Get PDF
    In very high energy nuclear collisions, the initial energy of produced gluons per unit area per unit rapidity, dE/L2/dηdE/L^2/d\eta, is equal to f(g2μL)(g2μ)3/g2f(g^2\mu L) (g^2\mu)^3/g^2, where μ2\mu^2 is proportional to the gluon density per unit area of the colliding nuclei. For an SU(2) gauge theory, we perform a non--perturbative numerical computation of the function f(g2μL)f(g^2\mu L). It decreases rapidly for small g2μLg^2\mu L but varies only by 25\sim 25%, from 0.208±0.0040.208\pm 0.004 to 0.257±0.0050.257\pm 0.005, for a wide range 35.36--296.98 in g2μLg^2\mu L, including the range relevant for collisions at RHIC and LHC. Extrapolating to SU(3), we estimate the initial energy per unit rapidity for Au-Au collisions in the central region at RHIC and LHC.Comment: 11 pages, Latex, 3 figures; revised version-includes additional numerical data; reference adde

    The initial gluon multiplicity in heavy ion collisions

    Get PDF
    The initial gluon multiplicity per unit area per unit rapidity, dN/L^2/d\eta, in high energy nuclear collisions, is equal to f_N (g^2\mu L) (g^2\mu)^2/g^2, with \mu^2 proportional to the gluon density per unit area of the colliding nuclei. For an SU(2) gauge theory, we compute f_N (g^2\mu L)=0.14\pm 0.01 for a wide range in g^2\mu L. Extrapolating to SU(3), we predict dN/L^2/d\eta for values of g^2\mu L in the range relevant to the Relativistic Heavy Ion Collider and the Large Hadron Collider. We compute the initial gluon transverse momentum distribution, dN/L^2/d^2 k_\perp, and show it to be well behaved at low k_\perp.Comment: LaTex 10 pgs., 3 figure

    2+1 Dimensional Georgi-Glashow Instantons in Weyl Gauge

    Full text link
    Semiclassical instanton solutions in the 3D SU(2) Georgi-Glashow model are transformed into the Weyl gauge. This illustrates the tunneling interpretation of these instantons and provides a smooth regularization of the singular unitary gauge. The 3D Georgi-Glashow model has both instanton and sphaleron solutions, in contrast to 3D Yang-Mills theory which has neither, and 4D Yang-Mills theory which has instantons but no sphaleron, and 4D electroweak theory which has a sphaleron but no instantons. We also discuss the spectral flow picture of fundamental fermions in a Georgi-Glashow instanton background.Comment: 22 pages, 8 figures, revtex4; v2 - references and comments adde

    Cronin Effect and High-p_T Suppression in pA Collisions

    Full text link
    We review the predictions of the theory of Color Glass Condensate for gluon production cross section in p(d)A collisions. We demonstrate that at moderate energies, when the gluon production cross section can be calculated in the framework of McLerran-Venugopalan model, it has only partonic level Cronin effect in it. At higher energies/rapidities corresponding to smaller values of Bjorken x quantum evolution becomes important. The effect of quantum evolution at higher energies/rapidities is to introduce suppression of high-p_T gluons slightly decreasing the Cronin enhancement. At still higher energies/rapidities quantum evolution leads to suppression of produced gluons at all values of p_T.Comment: 32 pages, 8 figures, v2: extended and improved discussion, references adde

    Shadowing of gluons in perturbative QCD: A comparison of different models

    Get PDF
    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that in the kinematic region appropriate to RHIC experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to LHC, there is a sizable difference between predictions of the different models.Comment: 11 pages, 4 figure

    Survival probability in diffractive Higgs production in high density QCD

    Full text link
    In this paper, the contribution of hard processes described by the BFKL pomeron exchange, is taken into account by calculating the first enhanced diagram. The survival probability is estimated, using the ratio of the first enhanced diagram and the single pomeron amplitude, taking into account all essential pomeron loop diagrams in the toy model of Mueller. The triple pomeron vertex is calculated explicitly in the momentum representation. This calculation is used for estimating the survival probability, It turns out that the survival probability is small, at 0.40.4%{}. Hard pomeron re-scattering processes contribute substantially to the survival probability.Comment: 28 pages, 7 figure
    corecore