1,622 research outputs found

    Performance Evaluation of SCTP wth Adaptive Multistreamiing over LEO Satellite Networks

    Get PDF
    科研費報告書収録論文(課題番号:17500030/研究代表者:加藤寧/インターネットと高親和性を有する次世代低軌道衛星ネットワークに関する基盤研究

    Supporting IP/LEO satellite networks by handover-independent IP mobility management

    Get PDF
    科研費報告書収録論文(課題番号:14380172・基盤研究(B)(2) ・H14~H15/研究代表者:根元, 義章/トラヒックパターンの時系列解析に基づく次世代広域不正アクセス自動追跡システム

    Clinical course of focal choroidal excavation in Vogt-Koyanagi-Harada disease

    Get PDF
    We describe focal choroidal excavation (FCE) in a case of Vogt–Koyanagi–Harada (VKH) disease and compare the findings with different chorioretinal conditions. A 55-year-old man was diagnosed with VKH based on panuveitis and exudative retinal detachments. Spectral-domain optical coherence tomography demonstrated a dome-shaped protrusion with a nonconforming pattern at the fovea, which had been detected as a conforming pattern 1 year before the onset. The FCE pattern returned into a conforming pattern following corticosteroid therapy. These findings suggest that the natively existent FCE could be affected by pathophysiological changes of VKH as well as other chorioretinal conditions

    Cu-NMR study on the disordered quantum spin magnet with the Bose-glass ground state

    Full text link
    Cu-NMR study has been performed on the disordered spin-gap system Tl1-xKxCuCl3 In the high-field H > HC=\Delta/\mu_B, where \Delta is the spin-gap, the hyperfine field becomes extremely inhomogeneous at low temperatures due to the field-induced magnetic order, indicating that the ordered spin state must be different from the pure TlCuCl3. In the low field H < HC, a saturating behavior in the longitudinal nuclear spin relaxation rate 1/T1 was observed at low temperatures, indicating existence of the magnetic ground state proposed to be Bose-glass phase by Fisher.Comment: RHMF200

    Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum

    Get PDF
    The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN) that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs). There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum
    corecore