75 research outputs found

    Optical Absorption Study by Ab initio Downfolding Approach: Application to GaAs

    Full text link
    We examine whether essence and quantitative aspects of electronic excitation spectra are correctly captured by an effective low-energy model constructed from an {\em ab initio} downfolding scheme. A global electronic structure is first calculated by {\em ab initio} density-functional calculations with the generalized gradient approximation. With the help of constrained density functional theory, the low-energy effective Hamiltonian for bands near the Fermi level is constructed by the downfolding procedure in the basis of maximally localized Wannier functions. The excited states of this low-energy effective Hamiltonian ascribed to an extended Hubbard model are calculated by using a low-energy solver. As the solver, we employ the Hartree-Fock approximation supplemented by the single-excitation configuration-interaction method considering electron-hole interactions. The present three-stage method is applied to GaAs, where eight bands are retained in the effective model after the downfolding. The resulting spectra well reproduce the experimental results, indicating that our downfolding scheme offers a satisfactory framework of the electronic structure calculation, particularly for the excitations and dynamics as well as for the ground state.Comment: 14 pages, 6 figures, and 1 tabl

    Direct Observation of Site-specific Valence Electronic Structure at Interface: SiO2/Si Interface

    Full text link
    Atom specific valence electronic structures at interface are elucidated successfully using soft x-ray absorption and emission spectroscopy. In order to demonstrate the versatility of this method, we investigated SiO2/Si interface as a prototype and directly observed valence electronic states projected at the particular atoms of the SiO2/Si interface; local electronic structure strongly depends on the chemical states of each atom. In addition we compared the experimental results with first-principle calculations, which quantitatively revealed the interfacial properties in atomic-scale.Comment: 4 pages, 3 figure

    Transformation Pathways of Silica under High Pressure

    Full text link
    Concurrent molecular dynamics simulations and ab initio calculations show that densification of silica under pressure follows a ubiquitous two-stage mechanism. First, anions form a close-packed sub-lattice, governed by the strong repulsion between them. Next, cations redistribute onto the interstices. In cristobalite silica, the first stage is manifest by the formation of a metastable phase, which was observed experimentally a decade ago, but never indexed due to ambiguous diffraction patterns. Our simulations conclusively reveal its structure and its role in the densification of silica.Comment: 14 pages, 4 figure

    Molecular structural order and anomalies in liquid silica

    Full text link
    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water.Comment: 30 pages, 8 figure
    • 

    corecore