30 research outputs found

    Comment on ``Consistency, amplitudes and probabilities in quantum theory'' by A. Caticha

    Full text link
    A carefully written paper by A. Caticha [Phys. Rev. A57, 1572 (1998)] applies consistency arguments to derive the quantum mechanical rules for compounding probability amplitudes in much the same way as earlier work by the present author [J. Math. Phys. 29, 398 (1988) and Int. J. Theor. Phys. 27, 543 (1998)]. These works are examined together to find the minimal assumptions needed to obtain the most general results

    Casimir Force between a Dielectric Sphere and a Wall: A Model for Amplification of Vacuum Fluctuations

    Get PDF
    The interaction between a polarizable particle and a reflecting wall is examined. A macroscopic approach is adopted in which the averaged force is computed from the Maxwell stress tensor. The particular case of a perfectly reflecting wall and a sphere with a dielectric function given by the Drude model is examined in detail. It is found that the force can be expressed as the sum of a monotonically decaying function of position and of an oscillatory piece. At large separations, the oscillatory piece is the dominant contribution, and is much larger than the Casimir-Polder interaction that arises in the limit that the sphere is a perfect conductor. It is argued that this enhancement of the force can be interpreted in terms of the frequency spectrum of vacuum fluctuations. In the limit of a perfectly conducting sphere, there are cancellations between different parts of the spectrum which no longer occur as completely in the case of a sphere with frequency dependent polarizability. Estimates of the magnitude of the oscillatory component of the force suggest that it may be large enough to be observable.Comment: 18pp, LaTex, 7 figures, uses epsf. Several minor errors corrected, additional comments added in the final two sections, and references update

    Casimir-Polder interaction of atoms with magnetodielectric bodies

    Full text link
    A general theory of the Casimir-Polder interaction of single atoms with dispersing and absorbing magnetodielectric bodies is presented, which is based on QED in linear, causal media. Both ground-state and excited atoms are considered. Whereas the Casimir-Polder force acting on a ground-state atom can conveniently be derived from a perturbative calculation of the atom-field coupling energy, an atom in an excited state is subject to transient force components that can only be fully understood by a dynamical treatment based on the body-assisted vacuum Lorentz force. The results show that the Casimir-Polder force can be influenced by the body-induced broadening and shifting of atomic transitions - an effect that is not accounted for within lowest-order perturbation theory. The theory is used to study the Casimir-Polder force of a ground-state atom placed within a magnetodielectric multilayer system, with special emphasis on thick and thin plates as well as a planar cavity consisting of two thick plates. It is shown how the competing attractive and repulsive force components related to the electric and magnetic properties of the medium, respectively, can - for sufficiently strong magnetic properties - lead to the formation of potential walls and wells.Comment: 16 pages, 6 figures, minor additions and correction

    Retarded long-range potentials for the alkali-metal atoms and a perfectly conducting wall

    Get PDF
    The retarded long-range potentials for hydrogen and alkali-metal atoms in their ground states and a perfectly conducting wall are calculated. The potentials are given over a wide range of atom-wall distances and the validity of the approximations used is established.Comment: RevTeX, epsf, 11 pages, 2 fig

    Using atomic interference to probe atom-surface interaction

    Get PDF
    We show that atomic interference in the reflection from two suitably polarized evanescent waves is sensitive to retardation effects in the atom-surface interaction for specific experimental parameters. We study the limit of short and long atomic de Broglie wavelength. The former case is analyzed in the semiclassical approximation (Landau-Zener model). The latter represents a quantum regime and is analyzed by solving numerically the associated coupled Schroedinger equations. We consider a specific experimental scheme and show the results for rubidium (short wavelength) and the much lighter meta-stable helium atom (long wavelength). The merits of each case are then discussed.Comment: 11 pages, including 6 figures, submitted to Phys. Rev. A, RevTeX sourc

    Long-range interactions of metastable helium atoms

    Full text link
    Polarizabilities, dispersion coefficients, and long-range atom-surface interaction potentials are calculated for the n=2 triplet and singlet states of helium using highly accurate, variationally determined, wave functions.Comment: RevTeX, epsf, 4 fig

    Quantum Integrals of Motion for Variable Quadratic Hamiltonians

    Full text link
    We construct the integrals of motion for several models of the quantum damped oscillators in nonrelativistic quantum mechanics in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.Comment: 32 pages, no figure

    On Born approximation in black hole scattering

    Full text link
    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordstr\"{o}m and Reissner-Nordstr\"{o}m-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes
    corecore