2,331 research outputs found

    Cluster magnetic fields from active galactic nuclei

    Full text link
    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.Comment: 4 pages, 2 figures, submitted to conference proceedings "The Monster's Fiery Breath: Feedback in Groups, Galaxies, and Clusters

    The Influence of AGN Feedback on Galaxy Cluster Observables

    Full text link
    Galaxy clusters are valuable cosmological probes. However, cluster mass estimates rely on observable quantities that are affected by complicated baryonic physics in the intracluster medium (ICM), including feedback from active galactic nuclei (AGN). Cosmological simulations have started to include AGN feedback using subgrid models. In order to make robust predictions, the systematics of different implementations and parametrizations need to be understood. We have developed an AGN subgrid model in FLASH that supports a few different black hole accretion models and feedback models. We use this model to study the effect of AGN on X-ray cluster observables and its dependence on model variations.Comment: minor error corrected, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison, Wisconsi

    Luminescence of defects in the structural transformation of layered tin dichalcogenides

    Get PDF
    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2, S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors

    Luminescence of defects in the structural transformation of layered tin dichalcogenides

    Get PDF
    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2, S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors

    Luminescence of defects in the structural transformation of layered tin dichalcogenides

    Get PDF
    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2, S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors

    Luminescence of defects in the structural transformation of layered tin dichalcogenides

    Get PDF
    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2, S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors

    Luminescence of defects in the structural transformation of layered tin dichalcogenides

    Get PDF
    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2, S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors

    Luminescence of defects in the structural transformation of layered tin dichalcogenides

    Get PDF
    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2, S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors

    Alloy oxidation as a route to chemically active nanocomposites of gold atoms in a reducible oxide matrix

    Get PDF
    While nanoparticles are being pursued actively for a number of applications, dispersed atomic species have been explored far less in functional materials architectures, primarily because composites comprising dispersed atoms are challenging to synthesize and difficult to stabilize against sintering or coarsening. Here we show that room temperature oxidation of Au–Sn alloys produces nanostructures whose surface is terminated by a reducible amorphous oxide that contains atomically dispersed Au. Analysis of the oxidation process shows that the dispersal of Au in the oxide can be explained by predominant oxygen anion diffusion and kinetically limitedmetalmass transport, which restrict phase separation due to a preferential oxidation of Sn. Nanostructures prepared by oxidation of nanoscale Au–Sn alloys with intermediate Au content (30–50%) show high activity in a CO-oxidation probe reaction due to a cooperative mechanism involving Au atoms as sites for CO adsorption and reaction to CO2 embedded in a reducible oxide that serves as a renewable oxygen reservoir. Our results demonstrate a reliable approach toward nanocomposites involving oxide-embedded, atomically dispersed noble metal species

    Alloy oxidation as a route to chemically active nanocomposites of gold atoms in a reducible oxide matrix

    Get PDF
    While nanoparticles are being pursued actively for a number of applications, dispersed atomic species have been explored far less in functional materials architectures, primarily because composites comprising dispersed atoms are challenging to synthesize and difficult to stabilize against sintering or coarsening. Here we show that room temperature oxidation of Au–Sn alloys produces nanostructures whose surface is terminated by a reducible amorphous oxide that contains atomically dispersed Au. Analysis of the oxidation process shows that the dispersal of Au in the oxide can be explained by predominant oxygen anion diffusion and kinetically limitedmetalmass transport, which restrict phase separation due to a preferential oxidation of Sn. Nanostructures prepared by oxidation of nanoscale Au–Sn alloys with intermediate Au content (30–50%) show high activity in a CO-oxidation probe reaction due to a cooperative mechanism involving Au atoms as sites for CO adsorption and reaction to CO2 embedded in a reducible oxide that serves as a renewable oxygen reservoir. Our results demonstrate a reliable approach toward nanocomposites involving oxide-embedded, atomically dispersed noble metal species
    • …
    corecore