8 research outputs found

    Inverse Additive Problems for Minkowski Sumsets II

    Full text link
    The Brunn-Minkowski Theorem asserts that μd(A+B)1/dμd(A)1/d+μd(B)1/d\mu_d(A+B)^{1/d}\geq \mu_d(A)^{1/d}+\mu_d(B)^{1/d} for convex bodies A,BRdA,\,B\subseteq \R^d, where μd\mu_d denotes the dd-dimensional Lebesgue measure. It is well-known that equality holds if and only if AA and BB are homothetic, but few characterizations of equality in other related bounds are known. Let HH be a hyperplane. Bonnesen later strengthened this bound by showing μd(A+B)(M1/(d1)+N1/(d1))d1(μd(A)M+μd(B)N),\mu_d(A+B)\geq (M^{1/(d-1)}+N^{1/(d-1)})^{d-1}(\frac{\mu_d(A)}{M}+\frac{\mu_d(B)}{N}), where M=sup{μd1((x+H)A)xRd}M=\sup\{\mu_{d-1}((\mathbf x+H)\cap A)\mid \mathbf x\in \R^d\} and N=sup{μd1((y+H)B)yRd}N=\sup\{\mu_{d-1}((\mathbf y+H)\cap B)\mid \mathbf y\in \R^d\}. Standard compression arguments show that the above bound also holds when M=μd1(π(A))M=\mu_{d-1}(\pi(A)) and N=μd1(π(B))N=\mu_{d-1}(\pi(B)), where π\pi denotes a projection of Rd\mathbb R^d onto HH, which gives an alternative generalization of the Brunn-Minkowski bound. In this paper, we characterize the cases of equality in this later bound, showing that equality holds if and only if AA and BB are obtained from a pair of homothetic convex bodies by `stretching' along the direction of the projection, which is made formal in the paper. When d=2d=2, we characterize the case of equality in the former bound as well

    On the structure of subsets of an orderable group with some small doubling properties

    Full text link
    The aim of this paper is to present a complete description of the structure of subsets S of an orderable group G satisfying |S^2| = 3|S|-2 and is non-abelian

    Inverse additive problems for Minkowski Sumsets II

    No full text
    The Brunn-Minkowski Theorem asserts that μ d (A+B) 1/d ≥μ d (A)1/d +μ d (B)1/d for convex bodies A,B⊂R d, where μ d denotes the d-dimensional Lebesgue measure. It is well known that equality holds if and only if A and B are homothetic, but few characterizations of equality in other related bounds are known. Let H be a hyperplane. Bonnesen later strengthened this bound by showing μd (A + B)≥ (M1/(d-1) + N1/(d-1))d-1 (μd (A)/M+μd(B)/N), where M=sup {μ d-1((x+H)⊂A) x ∈ R d} and N=sup{μ d-1 (y+H)∩B)∥ y∈Rd. Standard compression arguments show that the above bound also holds when M=μ d-1(π(A)) and N=μ d-1(π(B)), where π denotes a projection of R d onto H, which gives an alternative generalization of the Brunn-Minkowski bound. In this paper, we characterize the cases of equality in this latter bound, showing that equality holds if and only if A and B are obtained from a pair of homothetic convex bodies by \u27stretching\u27 along the direction of the projection, which is made formal in the paper. When d=2, we characterize the case of equality in the former bound as well. © 2011 Mathematica Josephina, Inc

    A small doubling structure theorem in a Baumslag-Solitar group

    No full text
    Let G denote an arbitrary group. If X is a subset of G, we define its square X^2 by X^2 = {ab | a, b ∈ X}. This paper deals with the following type of problems. Let X be a finite subset of a group G. Determine the structure of X if the following inequality holds: |X^2| ≤ α|X| + β for some small α ≥ 1 and small |β|. Such problems are called inverse problems of small doubling type. We solve a general inverse problem of small doubling type in a monoid, which is a subset of the Baumslag–Solitar group BS(1, 2). Here the Baumslag-Solitar groups BS(m, n) are two-generated groups with one relation, which are defined as follows: BS(m, n) = , where m and n are integers
    corecore