17,602 research outputs found
Measurement and Calibration of A High-Sensitivity Microwave Power Sensor with An Attenuator
In this paper, measurement and calibration of a high-sensitivity microwave power sensor through an attenuator is performed using direct comparison transfer technique. To provide reliable results, a mathematical model previously derived using signal flow graphs together with non-touching loop rule analysis for the measurement estimate (i.e. calibration factor) and its uncertainty evaluation is comparatively investigated. The investigation is carried out through the analysis of physical measurement processes, and consistent mathematical model is observed. Later, an example of Type-N (up to 18 GHz) application is used to demonstrate its calibration and measurement capability
Study of mechanical response in embossing of ceramic green substrate by micro-indentation
Micro-indentation test with a micro flat-end cone indenter was employed to
simulate micro embossing process and investigate the thermo-mechanical response
of ceramic green substrates. The laminated low temperature co-fired ceramic
green tapes were used as the testing material ; the correlations of indentation
depth versus applied force and applied stress at the temperatures of 25 degrees
C and 75degrees C were studied. The results showed that permanent indentation
cavities could be formed at temperatures ranging from 25 degrees C to 75
degrees C, and the depth of cavities created was applied force, temperature and
dwell time dependent. Creep occurred and made a larger contribution to the
plastic deformation at elevated temperatures and high peak loads. There was
instantaneous recovery during the unloading and retarded recovery in the first
day after indentation. There was no significant pile-up due to material flow
observed under compression at the temperature up to 75 degrees C. The plastic
deformation was the main cause for formation of cavity on the ceramic green
substrate under compression. The results can be used as a guideline for
embossing ceramic green substrates.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions
By using the method of density-matrix renormalization-group to solve the
different spin-spin correlation functions, the nearest-neighbouring
entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of
one-dimensional alternating Heisenberg XY spin chain is investigated in the
presence of alternating nearest neighbour interactions of exchange couplings,
external magnetic fields and next-nearest neighbouring interactions. For
dimerized ferromagnetic spin chain, NNNE appears only above the critical
dimerized interaction, meanwhile, the dimerized interaction effects quantum
phase transition point and improves NNNE to a large value. We also study the
effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN)
interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction
increases and shrinks NNE below and above critical frustrated interaction
respectively, while the antiferromagnetic NNN interaction always decreases NNE.
The antiferromagnetic NNN interaction results to a larger value of NNNE in
comparison to the case when the NNN interaction is ferromagnetic.Comment: 13 pages, 4 figures,. accepted by Chinese Physics B 2008 11 (in
press
Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La_{2-x}Sr_{x}CuO_{4} single crystals
The low-temperature specific heat (SH) of overdoped La_{2-x}Sr_{x}CuO_{4}
single crystals (0.178=<x=<0.290) has been measured. For the superconducting
samples (0.178=<x=<0.238), the derived gap values (without any adjusting
parameters) approach closely onto the theoretical prediction
\Delta_{0}=2.14k_{B}T_{c} for the weak-coupling d-wave BCS superconductivity.
In addition, the residual term \gamma(0) of SH at H=0 increases with x
dramatically when beyond x~0.22, and finally evolves into the value of a
complete normal metallic state at higher doping levels, indicating growing
amount of unpaired electrons. We argue that this large \gamma(0) cannot be
simply attributed to the pair breaking induced by the impurity scattering,
instead the phase separation is possible.Comment: 6 pages, 6 figures; Contents added; Accepted for publication in Phys.
Rev.
Network calculus for parallel processing
In this note, we present preliminary results on the use of "network calculus"
for parallel processing systems, specifically MapReduce
First Principles Study of Work Functions of Double Wall Carbon Nanotubes
Using first-principles density functional calculations, we investigated work
functions (WFs) of thin double-walled nanotubes (DWNTs) with outer tube
diameters ranging from 1nm to 1.5nm. The results indicate that work function
change within this diameter range can be up to 0.5 eV, even for DWNTs with same
outer diameter. This is in contrast with single-walled nanotubes (SWNTs) which
show negligible WF change for diameters larger than 1nm. We explain the WF
change and related charge redistribution in DWNTs using charge equilibration
model (CEM). The predicted work function variation of DWNTs indicates a
potential difficulty in their nanoelectronic device applications.Comment: 11 pages, 3 figures, to appear as rapid communication on Physical
Review
associated production at LHC in the general 2HDM with Spontaneous CP Violation
Spontaneous CP violation motivates the introduction of two Higgs doublets in
the electroweak theory. Such a simple extension of the standard model has three
neutral Higgs bosons and a pair charged Higgs, especially it leads to rich
CP-violating sources including the induced Kobayashi-Maskawa CP-violating
phase, the mixing of the neutral Higgs bosons due to the CP-odd Higgs and the
effective complex Yukawa couplings of the charged and neutral Higgs bosons.
Within this model, we present the production of a charged Higgs boson in
association with a W boson at the LHC, and calculate in detail the cross
section and the transverse momentum distribution of the associated W boson.Comment: 16 pages, 6 figures, omitted 3 figures, motivations for Type III 2HDM
with SCPV is emphasized, to be published in PR
Diffusion in a multi-component Lattice Boltzmann Equation model
Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE)
model are discussed in detail. The mass fluxes associated with different
mechanical driving forces are obtained using a Chapman-Enskog analysis. This
model is found to have correct diffusion behavior and the multiple diffusion
coefficients are obtained analytically. The analytical results are further
confirmed by numerical simulations in a few solvable limiting cases. The LBE
model is established as a useful computational tool for the simulation of mass
transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR
- …