202 research outputs found

    Microwave Penetration Depth and Quasiparticle Conductivity in PrFeAsO_1-y Single Crystals : Evidence for a Full-Gap Superconductor

    Full text link
    In-plane microwave penetration depth λab\lambda_{ab} and quaiparticle conductivity at 28 GHz are measured in underdoped single crystals of the Fe-based superconductor PrFeAsO1y_{1-y} (Tc35T_c\approx 35 K) by using a sensitive superconducting cavity resonator. λab(T)\lambda_{ab}(T) shows flat dependence at low temperatures, which is incompatible with the presence of nodes in the superconducting gap Δ(k)\Delta({\bf k}). The temperature dependence of the superfluid density demonstrates that the gap is non-zero (Δ/kBTc1.6\Delta/k_BT_c\gtrsim 1.6) all over the Fermi surface. The microwave conductivity below TcT_c exhibits an enhancement larger than the coherence peak, reminiscent of high-TcT_c cuprate superconductors.Comment: 4 pages, 3 figures. Version accepted for publication in Phys. Rev. Lett. For related results of hole-doped 122 system, see arXiv:0810.350

    Correlation-driven electronic nematicity in the Dirac semimetal BaNiS2

    Full text link
    In BaNiS2 a Dirac nodal-line band structure exists within a two-dimensional Ni square lattice system, in which significant electronic correlation effects are anticipated. Using scanning tunneling microscopy, we discover signs of correlated-electron behavior, namely electronic nematicity appearing as a pair of C2-symmetry striped patterns in the local density-of-states at ~60 meV above the Fermi energy. In observations of quasiparticle interference, as well as identifying scattering between Dirac cones, we find that the striped patterns in real space stem from a lifting of degeneracy among electron pockets at the Brillouin zone boundary. We infer a momentum-dependent energy shift with d-form factor, which we model numerically within a density wave equation framework that considers spin-fluctuation-driven nematicity. This suggests an unusual mechanism driving the nematic instability, stemming from only a small perturbation to the Fermi surface, in a system with very low density of states at the Fermi energy. The Dirac points lie at nodes of the d-form factor, and are almost unaffected by it. These results highlight BaNiS2 as a unique material in which Dirac electrons and symmetry-breaking electronic correlations coexist.Comment: 11 pages, 5 figures (plus 6 pages, 4 figures

    Lower Critical Fields of Superconducting PrFeAsO1y_{1-y} Single Crystals

    Full text link
    We have studied the lower critical fields H_{c1} of superconducting iron oxipnictide PrFeAsO_{1-y} single crystals for H parallel and perpendicular to the ab-planes. Measurements of the local magnetic induction at positions straddling the sample edge by using a miniature Hall-sensor array clearly resolve the first flux penetration from the Meissner state. The temperature dependence of H_{c1} for H || c is well scaled by the in-plane penetration depth without showing any unusual behavior, in contrast to previous reports. The anisotropy of penetration lengths at low temperatures is estimated to be ~ 2.5, which is much smaller than the anisotropy of the coherence lengths. This is indicative of multiband superconductivity in this system, in which the active band for superconductivity is more anisotropic. We also point out that the local induction measured at a position near the center of the crystal, which has been used in a number of reports for the determination of H_{c1}, might seriously overestimate the obtained H_{c1}-value.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.

    Electronic Collective Modes and Superconductivity in Layered Conductors

    Full text link
    A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the conduction electrons. This affects the dynamic screening properties of the Coulomb interaction in a layered material. We study the consequences of the existence of these collective modes for superconductivity. General equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon scheme that account for the screened Coulomb interaction. Specifically, we calculate the superconducting critical temperature Tc taking into account the full temperature, frequency and wave-vector dependence of the dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity. Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides, layered organic materials and high-Tc oxides. In particular, we demonstrate that the plasmon contribution (electronic mechanism) is dominant in the first class of layered materials. The theory shows that the description of so-called ``quasi-two-dimensional superconductors'' cannot be reduced to a purely 2D model, as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure
    corecore