33,707 research outputs found
Integrated Wireless Multimedia Turbo-Transceiver Design Approaching the Rayleigh Channel's Capacity: Interpreting Shannon's Lessons in the Turbo-Era
Claude Shannon's pioneering work quantified the performance limits of communications systems operating over classic wireline Gaussian channels. However, his source and channel coding theorems were derived for a range of idealistic conditions, which may not hold in low-delay, interactive wireless multimedia communications. Firstly, Shannon's ideal lossless source encoder, namely the entropy encoder may have an excessive codeword length, hence exhibiting a high delay and a high error sensitivity. However, in practice most multimedia source signals are capable of tolerating lossy, rather than lossless delivery to the human eye, ear and other human sensors. The corresponding lossy and preferably low-delay multimedia source codecs however exhibit unequal error sensitivity, which is not the case for Shannon's ideal entropy codec. There are further numerous differences between the Shannonian lessons originally outlined for Gaussian channels and their ramifications for routinely encountered dispersive wireless channels, where typically bursty, rather than random errors are encountered. This paper elaborates on these intriguiging lessons in the context of a few turbo-transceiver design examples, using a jointly optimised turbo transceiver capable of providing unequal error protection in the context of MPEG-4 aided wireless video telephony. The transceiver investigated consists of Space-Time Trellis Coding (STTC) invoked for the sake of mitigating the effects of fading, Trellis Coded Modulation (TCM) or Bit-Interleaved Coded Modulation (BICM) as well as two different-rate Non-Systematic Convolutional codes (NSCs) or Recursive Systematic Convolutional codes (RSCs). A single-class protection based benchmarker scheme combining STTC and NSC is used for comparison with the unequal-protection scheme advocated. The video performance of the various schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the achievable performance of the proposed scheme is within 0.99~dB of the corresponding capacity of the Rayleigh fading channel
Turbo-Detected Unequal Protection MPEG-4 Wireless Video Telephony using Multi-Level Coding, Trellis Coded Modulation and Space-Time Trellis Coding
Most multimedia source signals are capable of tolerating lossy, rather than lossless delivery to the human eye, ear and other human sensors. The corresponding lossy and preferably low-delay multimedia source codecs however exhibit unequal error sensitivity, which is not the case for Shannon’s ideal entropy codec. This paper proposes a jointly optimised turbo transceiver design capable of providing unequal error protection for MPEG-4 coding aided wireless video telephony. The transceiver investigated consists of space-time trellis coding (STTC) invoked for the sake of mitigating the effects of fading, in addition to bandwidth efficient trellis coded modulation or bit-interleaved coded modulation, combined with a multi-level coding scheme employing either two different-rate non-systematic convolutional codes (NSCs) or two recursive systematic convolutional codes for yielding a twin-class unequal-protection. A single-class protection based benchmark scheme combining STTC and NSC is used for comparison with the unequal-protection scheme advocated. The video performance of the various schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the proposed scheme requires about 2.8 dBs lower transmit power than the benchmark scheme in the context of the MPEG-4 videophone transceiver at a similar decoding complexity
Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony
Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment
A Turbo-Detection Aided Serially Concatenated MPEG-4/TCM Videophone Transceiver
A Turbo-detection aided serially concatenated inner Trellis Coded Modulation (TCM) scheme is combined with four different outer codes, namely with a Reversible Variable Length Code (RVLC), a Non-Systematic Convolutional (NSC) code a Recursive Systematic Convolutional (RSC) code or a Low Density Parity Check (LDPC) code. These four outer constituent codes are comparatively studied in the context of an MPEG4 videophone transceiver. These serially concatenated schemes are also compared to a stand-alone LDPC coded MPEG4 videophone system at the same effective overall coding rate. The performance of the proposed schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the serially concatenated TCM-NSC scheme was the most attractive one in terms of coding gain and decoding complexity among all the schemes considered in the context of the MPEG4 videophone transceiver. By contrast, the serially concatenated TCM-RSC scheme was found to attain the highest iteration gain among the schemes considered
Carrier-mediated antiferromagnetic interlayer exchange coupling in diluted magnetic semiconductor multilayers GaMnAs/GaAs:Be
We use neutron reflectometry to investigate the interlayer exchange coupling
between GaMnAs ferromagnetic semiconductor layers separated
by non-magnetic Be-doped GaAs spacers. Polarized neutron reflectivity measured
below the Curie temperature of GaMnAs reveals a
characteristic splitting at the wave vector corresponding to twice the
multilayer period, indicating that the coupling between the ferromagnetic
layers are antiferromagnetic (AFM). When the applied field is increased to
above the saturation field, this AFM coupling is suppressed. This behavior is
not observed when the spacers are undoped, suggesting that the observed AFM
coupling is mediated by charge carriers introduced via Be doping. The behavior
of magnetization of the multilayers measured by DC magnetometry is consistent
with the neutron reflectometry results.Comment: 4 pages, 4 figure
Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach
It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris
Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2
We have performed thermodynamic and neutron scattering measurements on the
S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility
indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is
observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low
energy spin excitations with no observable gap down to 0.1 meV. The specific
heat at low-T follows a power law with exponent less than or equal to 1. These
results suggest that an unusual spin-liquid state with essentially gapless
excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3:
Updated version; v4: Published versio
- …