6,036 research outputs found
Air Taxi Skyport Location Problem for Airport Access
Witnessing the rapid progress and accelerated commercialization made in
recent years for the introduction of air taxi services in near future across
metropolitan cities, our research focuses on one of the most important
consideration for such services, i.e., infrastructure planning (also known as
skyports). We consider design of skyport locations for air taxis accessing
airports, where we present the skyport location problem as a modified
single-allocation p-hub median location problem integrating choice-constrained
user mode choice behavior into the decision process. Our approach focuses on
two alternative objectives i.e., maximizing air taxi ridership and maximizing
air taxi revenue. The proposed models in the study incorporate trade-offs
between trip length and trip cost based on mode choice behavior of travelers to
determine optimal choices of skyports in an urban city. We examine the
sensitivity of skyport locations based on two objectives, three air taxi
pricing strategies, and varying transfer times at skyports. A case study of New
York City is conducted considering a network of 149 taxi zones and 3 airports
with over 20 million for-hire-vehicles trip data to the airports to discuss
insights around the choice of skyport locations in the city, and demand
allocation to different skyports under various parameter settings. Results
suggest that a minimum of 9 skyports located between Manhattan, Queens and
Brooklyn can adequately accommodate the airport access travel needs and are
sufficiently stable against transfer time increases. Findings from this study
can help air taxi providers strategize infrastructure design options and
investment decisions based on skyport location choices.Comment: 25 page
Racism and anti-racism in Europe: a critical analysis of concepts and frameworks
The targets and expressions of racism vary across Europe. This article discusses the relevance of different descriptions and analyses of racism despite the different terms used in different countries such as ‘ethnic minority’, ‘foreigner’ or ‘black’ and different interpretations of which differences matter. It shows the significance of a cross-national European perspective on racism. There are important convergences across European countries in the discourses and practices of racism, particularly the distinction between ‘useful’ and ‘abusive’ migrants. A cross-European perspective can be an important inspiration for anti-racist struggles
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
Unlike most established methods they rely on low-level input, for instance
calorimeter output. While their network architectures are vastly different,
their performance is comparatively similar. In general, we find that these new
approaches are extremely powerful and great fun.Comment: Yet another tagger included
Large non-Gaussianity from two-component hybrid inflation
We study the generation of non-Gaussianity in models of hybrid inflation with
two inflaton fields, (2-brid inflation). We analyse the region in the parameter
and the initial condition space where a large non-Gaussianity may be generated
during slow-roll inflation which is generally characterised by a large f_NL,
tau_NL and a small g_NL. For certain parameter values we can satisfy
tau_NL>>f_NL^2. The bispectrum is of the local type but may have a significant
scale dependence. We show that the loop corrections to the power spectrum and
bispectrum are suppressed during inflation, if one assume that the fields
follow a classical background trajectory. We also include the effect of the
waterfall field, which can lead to a significant change in the observables
after the waterfall field is destabilised, depending on the couplings between
the waterfall and inflaton fields.Comment: 16 pages, 6 figures; v2: comments and references added, typos
corrected, matches published versio
The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer
The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer
Direct extreme UV-lithographic conversion of metal xanthates into nanostructured metal sulfide layers for hybrid photovoltaics
We present a versatile strategy toward the preparation of nanostructured metal sulfide layers, which exploits the photosensitivity of metal xanthates as a powerful tool for lithographic structuring. Using extreme ultraviolet interference lithography (EUV-IL), we successfully realized well-defined column and comb nanostructures. This approach provides new pathways to fabricate highly ordered structured metal sulfide layers with periodicities far below 100 nm for potential application in hybrid solar cells. © 2013 The Royal Society of Chemistry
Complex-Orbital Order in Fe_3O_4 and Mechanism of the Verwey Transition
Electronic state and the Verwey transition in magnetite (Fe_3O_4) are studied
using a spinless three-band Hubbard model for 3d electrons on the B sites with
the Hartree-Fock approximation and the exact diagonalisation method.
Complex-orbital, e.g., 1/sqrt(2)[|zx> + i |yz>], ordered (COO) states having
noncollinear orbital moments ~ 0.4 mu_B on the B sites are obtained with the
cubic lattice structure of the high-temperature phase. The COO state is a novel
form of magnetic ordering within the orbital degree of freedom. It arises from
the formation of Hund's second rule states of spinless pseudo-d molecular
orbitals in the Fe_4 tetrahedral units of the B sites and ferromagnetic
alignment of their fictitious orbital moments. A COO state with longer
periodicity is obtained with pseudo-orthorhombic Pmca and Pmc2_1 structures for
the low-temperature phase. The state spontaneously lowers the crystal symmetry
to the monoclinic and explains experimentally observed rhombohedral cell
deformation and Jahn-Teller like distortion. From these findings, we consider
that at the Verwey transition temperature, the COO state remaining to be
short-range order impeded by dynamical lattice distortion in high temperature
is developed into that with long-range order coupled with the monoclinic
lattice distortion.Comment: 16 pages, 13 figures, 6 tables, accepted for publication in J. Phys.
Soc. Jp
Shell Model Monte Carlo studies of neutron-rich nuclei in the 1s-0d-1p-0f shells
We demonstrate the feasibility of realistic Shell-Model Monte Carlo (SMMC)
calculations spanning multiple major shells, using a realistic interaction
whose bad saturation and shell properties have been corrected by a newly
developed general prescription. Particular attention is paid to the approximate
restoration of translational invariance. The model space consists of the full
sd-pf shells. We include in the study some well-known T=0 nuclei and several
unstable neutron-rich ones around N=20,28. The results indicate that SMMC can
reproduce binding energies, B(E2) transitions, and other observables with an
interaction that is practically parameter free. Some interesting insight is
gained on the nature of deep correlations. The validity of previous studies is
confirmed.Comment: 22 pages + 7 postscript figure
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
- …
