30,991 research outputs found
Numerical simulation of vortex breakdown by the vortex-filament method
The vortex filament method was applied to the simulation of vortex breakdown. The principal vortex region was represented by multiple filaments, and an axial velocity component was induced by a spiral winding of the filaments. First, an accuracy check was performed for a cylindrical swirling flow with simple analytical expressions for the axial and theta velocities. The result suggests that the flow field is simulated to any accuracy by increasing the number of filaments. Second, an axisymmetric type vortex breakdown was simulated, with experimental data serving as upstream conditions. The calculated axial and theta velocity contours show the breakdown of the vortex, including a rapid change in the vortex core, followed axially by a recovery zone and then a second breakdown. When three dimensional initial data are used the second breakdown appears to be of the spiral type in correspondence with experimental observations. The present method is easily used to simulate other types of vortex breakdown or other vortex flows with axial velocity
Plasma-sprayed self-lubricating coatings
One of the most important criterion for acceptable commercial application of a multiple phase composition is uniformity and reproducibility. This means that the performance characteristics of the coat - e.g., its lubricating properties, bond strength to the substrate, and thermal properties - can be readily predicted to give a desired performance. The improvement of uniformity and reproducibility of the coats, the oxidation behavior at three temperature ranges, the effect of bond coat and the effect of preheat treatment as measured by adhesive strength tests, coating examination procedures, and physical property measurements were studied. The following modifications improved the uniformity and reproducibility: (1) changes and closer control in the particle size range of the raw materials used, (2) increasing the binder content from 3.2% to 4.1% (dried weight), and (3) analytical processing procedures using step by step checking to assure consistency
Turbulent boundary layer around a group of obstacles in the direction of flow
Results of an investigation of a boundary layer in a turbulent flow on the surface of a wall having a group of obstacles on the path of flow are presented with regard to the mean velocity field, velocity distribution of the two dimensional flow, wall surface shear stresses and Reynolds stresses measured in a downstream cross section where an interference of boundary layers takes place in a flow around adjacent obstacles arranged on the path of flow
The last orbit of binary black holes
We have used our new technique for fully numerical evolutions of orbiting
black-hole binaries without excision to model the last orbit and merger of an
equal-mass black-hole system. We track the trajectories of the individual
apparent horizons and find that the binary completed approximately one and a
third orbits before forming a common horizon. Upon calculating the complete
gravitational radiation waveform, horizon mass, and spin, we find that the
binary radiated 3.2% of its mass and 24% of its angular momentum. The early
part of the waveform, after a relatively short initial burst of spurious
radiation, is oscillatory with increasing amplitude and frequency, as expected
from orbital motion. The waveform then transitions to a typical `plunge'
waveform; i.e. a rapid rise in amplitude followed by quasinormal ringing. The
plunge part of the waveform is remarkably similar to the waveform from the
previously studied `ISCO' configuration. We anticipate that the plunge
waveform, when starting from quasicircular orbits, has a generic shape that is
essentially independent of the initial separation of the binary.Comment: 5 pages, 5 figures, revtex
- …