26,681 research outputs found

    DsJ+(2632)D_{sJ}^+(2632): An Excellent Candidate of Tetraquarks

    Full text link
    We analyze various possible interpretations of the narrow state DsJ(2632)D_{sJ}(2632) which lies 100 MeV above threshold. This interesting state decays mainly into DsηD_s \eta instead of D0K+D^0 K^+. If this relative branching ratio is further confirmed by other experimental groups, we point out that the identification of DsJ(2632)D_{sJ}(2632) either as a csˉc\bar s state or more generally as a 3ˉ{\bf {\bar 3}} state in the SU(3)FSU(3)_F representation is probably problematic. Instead, such an anomalous decay pattern strongly indicates DsJ(2632)D_{sJ}(2632) is a four quark state in the SU(3)FSU(3)_F 15{\bf 15} representation with the quark content 122(dsdˉ+sddˉ+suuˉ+usuˉ−2sssˉ)cˉ{1\over 2\sqrt{2}} (ds\bar{d}+sd\bar{d}+su\bar{u}+us\bar{u}-2ss\bar{s})\bar{c}. We discuss its partners in the same multiplet, and the similar four-quark states composed of a bottom quark BsJ0(5832)B_{sJ}^0(5832). Experimental searches of other members especially those exotic ones are strongly called for

    Gamma-Ray Burst Afterglows from Realistic Fireballs

    Get PDF
    A GRB afterglow has been commonly thought to be due to continuous deceleration of a postburst fireball. Many analytical models have made simplifications for deceleration dynamics of the fireball and its radiation property, although they are successful at explaining the overall features of the observed afterglows. We here propose a model for a GRB afterglow in which the evolution of a postburst fireball is in an intermediate case between the adiabatic and highly radiative expansion. In our model, the afterglow is both due to the contribution of the adiabatic electrons behind the external blastwave of the fireball and due to the contribution of the radiative electrons. In addition, this model can describe evolution of the fireball from the extremely relativistic phase to the non-relativistic phase. Our calculations show that the fireball will go to the adiabatic expansion phase after about a day if the accelerated electrons are assumed to occupy the total internal energy. In all cases considered, the fireball will go to the mildly relativistic phase about 10410^4 seconds later, and to the non-relativistic phase after several days. These results imply that the relativistic adiabatic model cannot describe the deceleration dynamics of the several-days-later fireball. The comparison of the calculated light curves with the observed results at late times may imply the presence of impulsive events or energy injection with much longer durations.Comment: 18 pages, 10 figures, plain latex file, submitted to Ap

    Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs

    Full text link
    For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock crosses the ejecta, usually the shocked regions are still precipitated by the prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV photon flow with the shocked regions, the optical depth for the GeV photons produced in the shocks is very large. These high energy photons are absorbed by the MeV photon flow and generate relativistic e^\pm pairs. These pairs re-scatter the soft X-ray photons from the forward shock as well as the prompt \gamma-ray photons and power detectable high energy emission, significant part of which is in the sub-GeV energy range. Since the total energy contained in the forward shock region and the reverse shock region are comparable, the predicted sub-GeV emission is independent on whether the GRB ejecta are magnetized (in which case the reverse shock IC and synchrotron self-Compton emission is suppressed). As a result, a sub-GeV flash is a generic signature for the GRB wind model, and it should be typically detectable by the future {\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission powered by the interaction of the shock accelerated protons with the synchrotron photons in both the forward and reverse shock regions, there comes another 101410^{14}eV neutrino emission component powered by protons interacting with the MeV photon flow. This last component has a similar spectrum to the one generated in the internal shock phase, but the typical energy is slightly lower.Comment: 7 pages, accepted for publication in Ap

    The Afterglow of GRB 990123 and a Dense Medium

    Get PDF
    Recent observations show that the temporal decay of the R-band afterglow from GRB 990123 steepened about 2.5 days after the burst. We here propose a possible explanation for such a steepening: a shock expanding in a dense medium has undergone the transition from a relativistic phase to a nonrelativistic phase. We find that this model is consistent with the observations if the medium density is about 3×106cm−33\times 10^6 {\rm cm}^{-3}. By fitting our model to the observed optical and X-ray afterglow quantitatively, we further infer the electron and magnetic energy fractions of the shocked medium and find these two parameters are about 0.1 and 2×10−82\times 10^{-8} respectively. The former parameter is near the equipartition value while the latter is about six orders of magnitude smaller than inferred from the GRB 970508 afterglow. We also discuss possibilities that the dense medium can be produced.Comment: 12 pages, LaTeX, published in ApJ Letter

    Gamma-Ray Burst Afterglows with Energy Injection: Homogeneous Versus Wind External Media

    Get PDF
    Assuming an adiabatic evolution of a gamma-ray burst (GRB) fireball interacting with an external medium, we calculate the hydrodynamics of the fireball with energy injection from a strongly magnetic millisecond pulsar through magnetic dipole radiation, and obtain the light curve of the optical afterglow from the fireball by synchrotron radiation. Results are given both for a homogeneous external medium and for a wind ejected by GRB progenitor. Our calculations are also available in both ultra-relativistic and non-relativistic phases. Furthermore, the observed R-band light curve of GRB{000301C} can be well fitted in our model, which might provide a probe of the properties of GRB progenitors.Comment: revised version for publication in Chin. Phys. Let

    A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20

    Full text link
    The brightest giant flare from the soft γ\gamma-ray repeater (SGR) 1806-20 was detected on 2004 December 27. The isotropic-equivalent energy release of this burst is at least one order of magnitude more energetic than those of the two other SGR giant flares. Starting from about one week after the burst, a very bright (∼80\sim 80 mJy), fading radio afterglow was detected. Follow-up observations revealed the multi-frequency light curves of the afterglow and the temporal evolution of the source size. Here we show that these observations can be understood in a two-component explosion model. In this model, one component is a relativistic collimated outflow responsible for the initial giant flare and the early afterglow, and another component is a subrelativistic wider outflow responsible for the late afterglow. We also discuss triggering mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for publication in ApJ Letter
    • …
    corecore