12 research outputs found

    Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    No full text
    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Study of cold atmospheric plasma jet at the end of flexible plastic tube for microbial decontamination

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICORecently, cold atmospheric plasmas have demonstrated very promising antimicrobial activity in vitro and in vivo including selective destruction of tumor cells. However, the size and the rigidity of most plasma systems limit the clinical application for treatments in internal organs or regions with difficult access (e.g., mouth). Here, we report a device that allows ignition of cold He plasma jet at the tip of 1m long, 3.5 mm diameter, flexible plastic tube. It is connected to a dielectric enclosure where dielectric barrier discharge (DBD) is generated by a low-frequency AC power supply. A thin wire at floating potential put inside the plastic tube assists the formation of plasma jet at the downstream tube end. The flexible tube can be kept and manipulated by hand without electric shock and thus the plasma jet can be easily directed to a target. Variation of duty cycle of the applied voltage signal allows precise adjustment of the discharge power. The anti-microbial efficiency of plasma jet system with flexible tube was tested against fungus Candida albicans seeded on agar.Recently, cold atmospheric plasmas have demonstrated very promising antimicrobial activity in vitro and in vivo including selective destruction of tumor cells. However, the size and the rigidity of most plasma systems limit the clinical application for treatments in internal organs or regions with difficult access (e.g., mouth). Here, we report a device that allows ignition of cold He plasma jet at the tip of 1m long, 3.5 mm diameter, flexible plastic tube. It is connected to a dielectric enclosure where dielectric barrier discharge (DBD) is generated by a low-frequency AC power supply. A thin wire at floating potential put inside the plastic tube assists the formation of plasma jet at the downstream tube end. The flexible tube can be kept and manipulated by hand without electric shock and thus the plasma jet can be easily directed to a target. Variation of duty cycle of the applied voltage signal allows precise adjustment of the discharge power. The anti-microbial efficiency of plasma jet system with flexible tube was tested against fungus Candida albicans seeded on agar.1212SI13831391FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCNPq [470995/2013-0]2013/06732-3, 2014/00719-8470995/2013-02. International Workshop on Plasma for Cancer Treatment16 a 17 de Março de 2015Nagoya, JapãoNagoya Universit
    corecore