441 research outputs found

    Exact Methods for Self Interacting Neutrinos

    Full text link
    The effective many-body Hamiltonian which describes vacuum oscillations and self interactions of neutrinos in a two flavor mixing scheme under the single angle approximation has the same dynamical symmetries as the well known BCS pairing Hamiltonian. These dynamical symmetries manifest themselves in terms of a set of constants of motion and can be useful in formulating the collective oscillation modes in an intuitive way. In particular, we show that a neutrino spectral split can be simply viewed as an avoided level crossing between the eigenstates of a mean field Hamiltonian which includes a Lagrange multiplier in order to fix the value of an exact many-body constant of motion. We show that the same dynamical symmetries also exist in the three neutrino mixing scheme by explicitly writing down the corresponding constants of motion.Comment: To appear in the proceedings of CETUP* 201

    An Exactly Solvable Model of Interacting Bosons

    Full text link
    We introduce a class of exactly solvable boson models. We give explicit analytic expressions for energy eigenvalues and eigenvectors for an sd-boson Hamiltonian, which is related to the SO(6) chain of the Interacting Boson Model Hamiltonian.Comment: 8 pages of LATE

    Spectral splits of neutrinos as a BCS-BEC crossover type phenomenon

    Full text link
    We show that the spectral split of a neutrino ensemble which initially consists of electron type neutrinos, is analogous to the BCS-BEC crossover already observed in ultra cold atomic gas experiments. Such a neutrino ensemble mimics the deleptonization burst of a core collapse supernova. Although these two phenomena belong to very different domains of physics, the propagation of neutrinos from highly interacting inner regions of the supernova to the vacuum is reminiscent of the evolution of Cooper pairs between weak and strong interaction regimes during the crossover. The Hamiltonians and the corresponding many-body states undergo very similar transformations if one replaces the pair quasispin of the latter with the neutrino isospin of the former.Comment: 9 pages, 5 figure

    Supersymmetry and Nuclear Pairing

    Full text link
    We show that nuclear pairing Hamiltonian exhibits supersymmetry in the strong-coupling limit. The underlying supersymmetric quantum mechanical structure explains the degeneracies between the energies of the N and Nmax-N+1 pair eigenstates. The supersymmetry transformations connecting these states are given.Comment: 4 pages of REVTEX, one figur

    Symmetry and Supersymmetry in Nuclear Pairing: Exact Solutions

    Full text link
    Pairing plays a crucial role in nuclear spectra and attempts to describe it has a long history in nuclear physics. The limiting case in which all single particle states are degenerate, but with different s-wave pairing strengths was only recently solved. In this strong coupling limit the nuclear pairing Hamiltonian also exhibits a supersymmetry. Another solution away from those limits, namely two non-degenerate single particle states with different pairing strengths, was also given. In this contribution these developments are summarized and difficulties with possible generalizations to more single particle states and d-wave pairing are discussed.Comment: 6 pages of LATEX, to be published in the Proceedings of the "10th Int. Spring Seminar on Nuclear Physics: New Quests in Nuclear Structure", Vietri Sul Mare, May 21-25, 201
    corecore