1,692 research outputs found

    Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat

    Full text link
    The symmetry and structure of the superconducting gap in the Fe-based superconductors are the central issue for understanding these novel materials. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly-constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ("nodes"). Theoretical models also vary, suggesting that the absence or presence of the nodes depends quantitatively on the model parameters. An opinion that has gained substantial currency is that the gap structure, unlike all other known superconductors, including cuprates, may be different in different compounds within the same family. A unique method for addressing this issue, one of the very few methods that are bulk and angle-resolved, calls for measuring the electronic specific heat in a rotating magnetic field, as a function of field orientation with respect to the crystallographic axes. In this Communication we present the first such measurement for an Fe-based high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction, which allowed us to identify the locations of the gap minima (or nodes) on the Fermi surface. Our results are consistent with the expectations of an extended s-wave model with a significant gap anisotropy on the electron pockets and the gap minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure

    Proposed New Antiproton Experiments at Fermilab

    Full text link
    Fermilab operates the world's most intense source of antiprotons. Recently various experiments have been proposed that can use those antiprotons either parasitically during Tevatron Collider running or after the Tevatron Collider finishes in about 2010. We discuss the physics goals and prospects of the proposed experiments.Comment: 6 pages, 2 figures, to appear in Proceedings of IXth International Conference on Low Energy Antiproton Physics (LEAP'08), Vienna, Austria, September 16 to 19, 200

    Axion-mediated dark matter and Higgs diphoton signal

    Get PDF
    We consider axion-mediated dark matter models motivated by Fermi gamma ray line at 130 GeV, where anomaly interactions of an axion-like scalar mediate a singlet Dirac fermion dark matter (DM) to electroweak gauge bosons. In these models, extra vector-like leptons generate anomaly interactions for the axion and can also couple to the SM Higgs boson to modify the Higgs-to-diphoton rate. We can distinguish models by the branching fraction of the DM annihilation into a photon pair, favoring the model with a triplet fermion. From the condition that the lighter charged extra lepton must be heavier than dark matter for no tree-level DM annihilations, we also show that the ratio of Higgs-to-diphoton rate to the SM value is constrained by vacuum stability to 1.4(1.5) for the cutoff scale of 10(1) TeV.Comment: 29 pages, 6 figures, references adde

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure

    Normal-State Spin Dynamics and Temperature-Dependent Spin Resonance Energy in an Optimally Doped Iron Arsenide Superconductor

    Full text link
    The proximity of superconductivity and antiferromagnetism in the phase diagram of iron arsenides, the apparently weak electron-phonon coupling and the "resonance peak" in the superconducting spin excitation spectrum have fostered the hypothesis of magnetically mediated Cooper pairing. However, since most theories of superconductivity are based on a pairing boson of sufficient spectral weight in the normal state, detailed knowledge of the spin excitation spectrum above the superconducting transition temperature Tc is required to assess the viability of this hypothesis. Using inelastic neutron scattering we have studied the spin excitations in optimally doped BaFe1.85Co0.15As2 (Tc = 25 K) over a wide range of temperatures and energies. We present the results in absolute units and find that the normal state spectrum carries a weight comparable to underdoped cuprates. In contrast to cuprates, however, the spectrum agrees well with predictions of the theory of nearly antiferromagnetic metals, without complications arising from a pseudogap or competing incommensurate spin-modulated phases. We also show that the temperature evolution of the resonance energy follows the superconducting energy gap, as expected from conventional Fermi-liquid approaches. Our observations point to a surprisingly simple theoretical description of the spin dynamics in the iron arsenides and provide a solid foundation for models of magnetically mediated superconductivity.Comment: 8 pages, 4 figures, and an animatio
    • …
    corecore