173 research outputs found

    Depth profile photoemission study of thermally diffused Mn/GaAs (001) interfaces

    Full text link
    We have performed a depth profile study of thermally diffused Mn/GaAs (001) interfaces using photoemission spectroscopy combined with Ar+^+-ion sputtering. We found that Mn ion was thermally diffused into the deep region of the GaAs substrate and completely reacted with GaAs. In the deep region, the Mn 2pp core-level and Mn 3dd valence-band spectra of the Mn/GaAs (001) sample heated to 600 ^{\circ}C were similar to those of Ga1x_{1-x}Mnx_xAs, zinc-blende-type MnAs dots, and/or interstitial Mn in tetrahedrally coordinated by As atoms, suggesting that the Mn 3dd states were essentially localized but were hybridized with the electronic states of the host GaAs. Ferromagnetism was observed in the dilute Mn phase.Comment: 5 pages, 4 figure

    Indication of antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor Zn1x_{1-x}Cox_{x}O

    Full text link
    The magnetic properties of Zn1x_{1-x}Cox_xO (x=0.07x=0.07 and 0.10) thin films, which were homo-epitaxially grown on a ZnO(0001) substrates with varying relatively high oxygen pressure, have been investigated using x-ray magnetic circular dichroism (XMCD) at Co 2p2p core-level absorption edge. The line shapes of the absorption spectra are the same in all the films and indicate that the Co2+^{2+} ions substitute for the Zn sites. The magnetic-field and temperature dependences of the XMCD intensity are consistent with the magnetization measurements, indicating that except for Co there are no additional sources for the magnetic moment, and demonstrate the coexistence of paramagnetic and ferromagnetic components in the homo-epitaxial Zn1x_{1-x}Cox_{x}O thin films, in contrast to the ferromagnetism in the hetero-epitaxial Zn1x_{1-x}Cox_{x}O films studied previously. The analysis of the XMCD intensities using the Curie-Weiss law reveals the presence of antiferromagnetic interaction between the paramagnetic Co ions. Missing XMCD intensities and magnetization signals indicate that most of Co ions are non-magnetic probably because they are strongly coupled antiferromagnetically with each other. Annealing in a high vacuum reduces both the paramagnetic and ferromagnetic signals. We attribute the reductions to thermal diffusion and aggregation of Co ions with antiferromagnetic nanoclusters in Zn1x_{1-x}Cox_{x}O.Comment: 21 pages, 7 figures, accepted for Physical Review

    Perturbation Analysis of Superconductivity in the Trellis-Lattice Hubbard Model

    Full text link
    We investigate pairing symmetry and transition temperature in the trellis-lattice Hubbard model. We solve the \'Eliashberg equation using the third-order perturbation theory with respect to the on-site repulsion UU. We find that a spin-singlet state is very stable in a wide range of parameters. On the other hand, when the electron number density is shifted from the half-filled state and the band gap between two bands is small, a spin-triplet superconductivity is expected. Finally, we discuss a possibility of unconventional superconductivity and pairing symmetry in Sr14x_{14-x}Cax_xCu24_{24}O41_{41}.Comment: 7pages, 10 figures. To be published in J. Phys. Soc. Jp

    Optical and transport properties in doped two-leg ladder antiferromagnet

    Get PDF
    Within the t-J model, the optical and transport properties of the doped two-leg ladder antiferromagnet are studied based on the fermion-spin theory. It is shown that the optical and transport properties of the doped two-leg ladder antiferromagnet are mainly governed by the holon scattering. The low energy peak in the optical conductivity is located at a finite energy, while the resistivity exhibits a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which are consistent with the experiments.Comment: 13 pages, 5 figures, accepted for publication in Phys. Rev. B65 (2002) (April 15 issue

    Nonlinear optical response and spin-charge separation in one-dimensional Mott insulators

    Full text link
    We theoretically study the nonlinear optical response and photoexcited states of the Mott insulators. The nonlinear optical susceptibility \chi^(3) is calculated by using the exact diagonalization technique on small clusters. From the systematic study of the dependence of \chi^(3) on dimensionality, we find that the spin-charge separation plays a crucial role in enhancing \chi^(3) in the one-dimensional (1D) Mott insulators. Based on this result, we propose a holon-doublon model, which describes the nonlinear response in the 1D Mott insulators. These findings show that the spin-charge separation will become a key concept of optoelectronic devices.Comment: 5 pages with 3 figures, to appear in PRB RC, 15 August 200

    Nuclear Spin Relaxation in Hole Doped Two-Leg Ladders

    Full text link
    The nuclear spin-lattice relaxation rate (1/T11/T_{1}) has been measured in the single crystals of hole doped two-leg ladder compounds Sr14x_{14-x}Cax_{x}Cu24_{24}O41_{41} and in the undoped parent material La6_6Ca8_8Cu24_{24}O41_{41}. Comparison of 1/T11/T_{1} at the Cu and the two distinct oxygen sites revealed that the major spectral weight of low frequency spin fluctuations is located near q(π,π)q \sim (\pi, \pi) for most of the temperature and doping ranges investigated. Remarkable difference in the temperature dependence of 1/T11/T_1 for the two oxygen sites in the heavily doped xx=12 sample revealed reduction of singlet correlations between two legs in place of growing antiferromagnetic correlations along the leg direction with increasing temperature. Such behavior is most likely caused by the dissociation of bound hole pairs.Comment: 4 pages. to appear in J. Phys. Soc. Jpn. Vol. 6

    Charge-Density-Wave Formation in the Doped Two-Leg Extended Hubbard Ladder

    Full text link
    We investigate electronic properties of the doped two-leg Hubbard ladder with both the onsite and the nearest-neighbor Coulomb repulsions, by using the the weak-coupling renormalization-group method. It is shown that, for strong nearest-neighbor repulsions, the charge-density-wave state coexisting with the p-density-wave state becomes dominant fluctuation where spins form intrachain singlets. By increasing doping rate, we have also shown that the effects of the nearest-neighbor repulsions are reduced and the system exhibits a quantum phase transition into the d-wave-like (or rung-singlet) superconducting state. We derive the effective fermion theory which describes the critical properties of the transition point with the gapless excitation of magnon. The phase diagram of the two-leg ladder compound, Sr_{14-x}Ca_xCu_{24}O_{41}, is discussed.Comment: 4 pages, 2 figure

    Transport Properties of Doped t-J Ladders

    Full text link
    Conductivity and Hall coefficient for various types of t-J ladders are calculated as a function of temperature and frequency by numerical diagonalization. A crossover from an incoherent to a coherent charge dynamics is found at a temperature T_{coh}. There exists another crossover at T_{PG} below which a pseudogap opens in the optical spectra, induced by the opening of a spin gap. In the absence of the spin gap, T_{coh} and the coherent weight are suppressed especially with increasing dimensionality. On the contrary, T_{coh} is strongly enhanced by the pseudogap formation below T_{PG}, where the coherent Drude weight decreases with increasing dimensionality. The Hall coefficient shows a strong crossover at T_{PG} below which it has large amplitude for small doping concentration.Comment: 4 pages, RevTeX, 5 PostScript figure

    Phase Diagram of Coupled Ladders

    Full text link
    The 2-leg t-J ladder forms a spin liquid at half-filling which evolves to a Luther-Emery liquid upon doping. Our aim is to obtain a complete phase diagram for isotropic coupling (i.e. rungs and legs equal) as a function of electron density n and the ratio J/t (>0). Two known limiting cases are: n<1/2 which is a single band Luttinger liquid and small hole doping for J/t close to 0 which is a Nagaoka ferromagnet. Using Lanczos techniques we examine the region between the Nagaoka and Luther-Emery phases for 1>n>1/2. We find evidences for gapless behavior in both spin and charge channels for J/t<0.3 consistent with Luttinger liquids in both bonding and anti-bonding bands (i.e., C2S2). This proposal is based on the behavior of spin and charge correlation functions. For example the hole-hole correlation function which displays hole pairing at larger J/t, shows hole-hole repulsion in this region. As a further test, we examined the dependence of the energy on a relative phase shift between bonding and antibonding bands. For J/t < 0.3 this is very weak, indicating a lack of pairing between these channels.Comment: 21 pages, 18 figure

    Optical conductivity of one-dimensional doped Hubbard-Mott insulator

    Full text link
    We study the optical response of a strongly correlated electron system near the metal-insulator transition using a mapping to the sine-Gordon model. With semiclassical quantization, the spectral weight is distributed between a Drude peak and absorption lines due to breathers. We calculate the Drude weight, the optical gap, and the lineshape of breather absorption.Comment: 4 pages, 2 EPS figures, REVTEX 4, a final versio
    corecore