1,515 research outputs found

    The all-particle spectrum of primary cosmic rays in the wide energy range from 10^14 eV to 10^17 eV observed with the Tibet-III air-shower array

    Get PDF
    We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10^14 eV to 10^17 eV using 5.5 times 10^7 events collected in the period from 2000 November through 2004 October by the Tibet-III air-shower array located at 4300 m above sea level (atmospheric depth of 606 g/cm^2). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We performed extensive Monte Carlo calculations and discuss the model dependences involved in the final result assuming interaction models of QGSJET01c and SIBYLL2.1 and primary composition models of heavy dominant (HD) and proton dominant (PD) ones. Pure proton and pure iron primary models are also examined as extreme cases. The detector simulation was also made to improve the accuracy of determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other as expected from the characteristics of the experiment at the high altitude, where the air showers of the primary energy around the knee reaches near maximum development and their features are dominated by electromagnetic components leading to the weak dependence on the interaction model or the primary mass. This is the highest-statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.Comment: 19 pages, 20 figures, accepted by Ap

    Observation by an Air-Shower Array in Tibet of the Multi-TeV Cosmic-Ray Anisotropy due to Terrestrial Orbital Motion Around the Sun

    Full text link
    We report on the solar diurnal variation of the galactic cosmic-ray intensity observed by the Tibet III air shower array during the period from 1999 to 2003. In the higher-energy event samples (12 TeV and 6.2 TeV), the variations are fairly consistent with the Compton-Getting anisotropy due to the terrestrial orbital motion around the sun, while the variation in the lower-energy event sample (4.0 TeV) is inconsistent with this anisotropy. This suggests an additional anisotropy superposed at the multi-TeV energies, e.g. the solar modulation effect. This is the highest-precision measurement of the Compton-Getting anisotropy ever made.Comment: 4 pages, 2 figures, includes .bbl fil
    • …
    corecore