12,009 research outputs found
Sparse seismic imaging using variable projection
We consider an important class of signal processing problems where the signal
of interest is known to be sparse, and can be recovered from data given
auxiliary information about how the data was generated. For example, a sparse
Green's function may be recovered from seismic experimental data using sparsity
optimization when the source signature is known. Unfortunately, in practice
this information is often missing, and must be recovered from data along with
the signal using deconvolution techniques.
In this paper, we present a novel methodology to simultaneously solve for the
sparse signal and auxiliary parameters using a recently proposed variable
projection technique. Our main contribution is to combine variable projection
with sparsity promoting optimization, obtaining an efficient algorithm for
large-scale sparse deconvolution problems. We demonstrate the algorithm on a
seismic imaging example.Comment: 5 pages, 4 figure
Recommended from our members
Ecological thresholds and large carnivores conservation: Implications for the Amur tiger and leopard in China
The ecological threshold concept describes how changes in one or more factors at thresholds can result in a large shift in the state of an ecosystem. This concept focuses attention on limiting factors that affect the tolerance of systems or organisms and changes in them. Accumulating empirical evidence for the existence of ecological thresholds has created favorable conditions for practical application to wildlife conservation. Applying the concept has the potential to enhance conservation of two large carnivores, Amur tiger and leopard, and the knowledge gained could guide the construction of a proposed national park. In this review, ecological thresholds that result from considering a paradigm of bottom-up control were evaluated for their potential to contribute to the conservation of Amur tiger and leopard. Our review highlights that large carnivores, as top predators, are potentially affected by ecological thresholds arising from changes in climate (or weather), habitat, vegetation, prey, competitors, and anthropogenic disturbances. What's more, interactions between factors and context dependence need to be considered in threshold research and conservation practice, because they may amplify the response of ecosystems or organisms to changes in specific drivers. Application of the threshold concept leads to a more thorough evaluation of conservation needs, and could be used to guide future Amur tiger and leopard research and conservation in China. Such application may inform the conservation of other large carnivores worldwide
r-Process Nucleosynthesis in Shocked Surface Layers of O-Ne-Mg Cores
We demonstrate that rapid expansion of the shocked surface layers of an
O-Ne-Mg core following its collapse can result in r-process nucleosynthesis. As
the supernova shock accelerates through these layers, it makes them expand so
rapidly that free nucleons remain in disequilibrium with alpha-particles
throughout most of the expansion. This allows heavy r-process isotopes
including the actinides to form in spite of the very low initial neutron excess
of the matter. We estimate that yields of heavy r-process nuclei from this site
may be sufficient to explain the Galactic inventory of these isotopes.Comment: 11 pages, 1 figure, to appear in the Astrophysical Journal Letter
Reverse Osmosis Chemistry — Basics, Barriers and Breakthroughs
While reverse osmosis (RO) for desalination of brackish water, seawater and wastewater is a most economical and powerful method, its sensitivity to fouling points to the importance of understanding the water chemistry involved and methods of fouling control and system maintenance. As a chemical developer of antiscalants, antifoulants, and operation and maintenance chemicals needed for RO systems, we present here a basic understanding of RO chemistry, the challenges of scaling and colloidal fouling that limits % recovery of permeate and some breakthroughs we have attained
Power-Law Distributions in Circulating Money: Effect of Preferential Behavior
We introduce preferential behavior into the study on statistical mechanics of
money circulation. The computer simulation results show that the preferential
behavior can lead to power laws on distributions over both holding time and
amount of money held by agents. However, some constraints are needed in
generation mechanism to ensure the robustness of power-law distributions.Comment: 4 pages, 2 figure
- …