511 research outputs found

    One-mirror Fabry-Perot and one-slit Young interferometry

    Full text link
    We describe a new and distinctive interferometry in which a probe particle scatters off a superposition of locations of a single free target particle. In one dimension, probe particles incident on superposed locations of a single "mirror" can interfere as if in a Fabry-Perot interferometer; in two dimensions, probe particles scattering off superposed locations of a single "slit" can interfere as if in a two-slit Young interferometer. The condition for interference is loss of orthogonality of the target states and reduces, in simple examples, to transfer of orthogonality from target to probe states. We analyze experimental parameters and conditions necessary for interference to be observed.Comment: 5 pages, 2 figures, RevTeX, submitted to PR

    Hydrodynamics in 1+1 dimensions with gravitational anomalies

    Full text link
    The constraints imposed on hydrodynamics by the structure of gauge and gravitational anomalies are studied in two dimensions. By explicit integration of the consistent gravitational anomaly, we derive the equilibrium partition function at second derivative order. This partition function is then used to compute the parity-violating part of the covariant energy-momentum tensor and the transport coefficients.Comment: 9 pages, JHEP format.v2; added comments and references, matching published versio

    Constraints on Superfluid Hydrodynamics from Equilibrium Partition Functions

    Full text link
    Following up on recent work in the context of ordinary fluids, we study the equilibrium partition function of a 3+1 dimensional superfluid on an arbitrary stationary background spacetime, and with arbitrary stationary background gauge fields, in the long wavelength expansion. We argue that this partition function is generated by a 3 dimensional Euclidean effective action for the massless Goldstone field. We parameterize the general form of this action at first order in the derivative expansion. We demonstrate that the constitutive relations of relativistic superfluid hydrodynamics are significantly constrained by the requirement of consistency with such an effective action. At first order in the derivative expansion we demonstrate that the resultant constraints on constitutive relations coincide precisely with the equalities between hydrodynamical transport coefficients recently derived from the second law of thermodynamics.Comment: 46 page

    Coherence Resonance and Noise-Induced Synchronization in Globally Coupled Hodgkin-Huxley Neurons

    Get PDF
    The coherence resonance (CR) of globally coupled Hodgkin-Huxley neurons is studied. When the neurons are set in the subthreshold regime near the firing threshold, the additive noise induces limit cycles. The coherence of the system is optimized by the noise. A bell-shaped curve is found for the peak height of power spectra of the spike train, being significantly different from a monotonic behavior for the single neuron. The coupling of the network can enhance CR in two different ways. In particular, when the coupling is strong enough, the synchronization of the system is induced and optimized by the noise. This synchronization leads to a high and wide plateau in the local measure of coherence curve. The local-noise-induced limit cycle can evolve to a refined spatiotemporal order through the dynamical optimization among the autonomous oscillation of an individual neuron, the coupling of the network, and the local noise.Comment: five pages, five figure

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    (Non)-Renormalization of the Chiral Vortical Effect Coefficient

    Get PDF
    We show using diagramtic arguments that in some (but not all) cases, the temperature dependent part of the chiral vortical effect coefficient is independent of the coupling constant. An interpretation of this result in terms of quantization in the effective 3 dimensional Chern-Simons theory is also given. In the language of 3D dimensionally reduced theory, the value of the chiral vortical coefficient is related to the formula ∑n=1∞n=−1/12\sum_{n=1}^\infty n=-1/12. We also show that in the presence of dynamical gauge fields, the CVE coefficient is not protected from renormalization, even in the large NN limit.Comment: 11 pages, 3 figures. Version 2 corrects an error and calculates leading radiative correctio

    Memory functions and Correlations in Additive Binary Markov Chains

    Full text link
    A theory of additive Markov chains with long-range memory, proposed earlier in Phys. Rev. E 68, 06117 (2003), is developed and used to describe statistical properties of long-range correlated systems. The convenient characteristics of such systems, a memory function, and its relation to the correlation properties of the systems are examined. Various methods for finding the memory function via the correlation function are proposed. The inverse problem (calculation of the correlation function by means of the prescribed memory function) is also solved. This is demonstrated for the analytically solvable model of the system with a step-wise memory function.Comment: 11 pages, 5 figure
    • 

    corecore