427 research outputs found

    Downsizing of Star-Forming Galaxies by Gravitational Processes

    Full text link
    There is observed a trend that a lower mass galaxy forms stars at a later epoch. This downsizing of star-forming galaxies has been attributed to hydrodynamical or radiative feedback processes that regulate star formation. However, here we explain the downsizing by gravitational processes alone, in the bottom-up scenario where galaxies evolve from subgalactic-scale objects. Within a region of the initial density field that is to evolve into a lower mass galaxy, subgalactic-scale fluctuation is of a smaller amplitude. The formation of subgalactic-scale objects, i.e., gravitational collapse of the subgalactic-scale fluctuation, and the subsequent onset of star formation accordingly occur at a later epoch for a lower mass galaxy. As a function of galaxy mass, we calculate the peak epoch of formation of subgalactic-scale objects. The peak epoch is consistent with the peak epoch of star formation derived from observations. [abridged]Comment: 4 pages, to appear in Astronomy and Astrophysics (Research Note

    Statistical mechanics and large-scale velocity fluctuations of turbulence

    Full text link
    Turbulence exhibits significant velocity fluctuations even if the scale is much larger than the scale of the energy supply. Since any spatial correlation is negligible, these large-scale fluctuations have many degrees of freedom and are thereby analogous to thermal fluctuations studied in the statistical mechanics. By using this analogy, we describe the large-scale fluctuations of turbulence in a formalism that has the same mathematical structure as used for canonical ensembles in the statistical mechanics. The formalism yields a universal law for the energy distribution of the fluctuations, which is confirmed with experiments of a variety of turbulent flows. Thus, through the large-scale fluctuations, turbulence is related to the statistical mechanics.Comment: 7 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    Characteristic Scales of Initial Density and Velocity Fields

    Full text link
    For the initial fields of the density contrast and peculiar velocity, we theoretically calculate the differential and integral length scales, i.e., statistical measures that respectively characterize the small- and large-scale fluctuations of a random field. These length scales and the associated mass scales explain the length and mass scales observed for (1) halos of young galaxies at z > 5, (2) halos of galaxies at z = 0, and (3) the largest structures in the galaxy distribution at z = 0. We thereby discuss that such observed scales are fossil imprints of the characteristic scales of the initial fields.Comment: 12 pages, matches published version in Progress of Theoretical Physic

    Orbital Decay and Tidal Disruption of a Star Cluster: Analytical Calculation

    Get PDF
    The orbital decay and tidal disruption of a star cluster in a galaxy is studied in an analytical manner. Owing to dynamical friction, the star cluster spirals in toward the center of the galaxy. Simultaneously, the galactic tidal field strips stars from the outskirts of the star cluster. Under an assumption that the star cluster undergoes a self-similar evolution, we obtain the condition and timescale for the star cluster to reach the galaxy center before its disruption. The result is used to discuss the fate of so-called intermediate-mass black holes with >10^3 M(sun) found recently in young star clusters of starburst galaxies and also the mass function of globular clusters in galaxies.Comment: 12 pages, 1 PS file for 2 figures, to appear in The Astrophysical Journa

    Runaway Merging of Black Holes: Analytical Constraint on the Timescale

    Get PDF
    Following the discovery of a black hole (BH) with a mass of 10^3-10^6 M(sun) in a starburst galaxy M82, we study formation of such a BH via successive merging of stellar-mass BHs within a star cluster. The merging has a runaway characteristic. This is because massive BHs sink into the cluster core and have a high number density, and because the merging probability is higher for more massive BHs. We use the Smoluchowski equation to study analytically the evolution of the BH mass distribution. Under favorable conditions, which are expected for some star clusters in starburst galaxies, the timescale of the runaway merging is at most of order 10^7 yr. This is short enough to account for the presence of a BH heavier than 10^3 M(sun) in an ongoing starburst region.Comment: 10 pages, no figures, to appear in The Astrophysical Journal (Letters

    High stability design for new centrifugal compressor

    Get PDF
    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions

    Mass Segregation in Star Clusters: Analytic Estimation of the Timescale

    Get PDF
    Mass segregation in a star cluster is studied in an analytical manner. We consider a two-component cluster, which consists of two types of stars with different masses. Plummer's model is used for the initial condition. We trace the overall behaviors of the probability distribution functions of the two components and obtain the timescale of mass segregation as a simple function of the cluster parameters. The result is used to discuss the origin of a black hole with mass of > 1000 M(sun) found in the starburst galaxy M82.Comment: 12 pages, 1 ps file for 2 figures, to appear in The Astrophysical Journa

    Galaxy Interaction and Starburst-Seyfert Connection

    Full text link
    Galaxy interactions are studied in terms of the starburst-Seyfert connection. The starburst requires a high rate of gas supply. Since the efficiency for supplying the gas is high in a galaxy interaction, although the companion is not necessarily discernible, Seyfert galaxies with circumnuclear starbursts are expected to be interacting. Since the large amounts of circumnuclear gas and dust obscure the broad-line region, they are expected to be observed as Seyfert 2. The active galactic nucleus itself does not require a high rate of gas supply. Seyfert galaxies without circumnuclear starbursts are not necessarily expected to be interacting even at the highest luminosities. They are not necessarily expected to evolve from Seyfert galaxies with circumnuclear starbursts. We derive these and other theoretical expectations and confirm them with statistics on observational data of magnitude-limited samples of Seyfert galaxies.Comment: 28 pages, to appear in The Astrophysical Journa

    Gravitational Wave Bursts from Collisions of Primordial Black Holes in Clusters

    Full text link
    The rate of gravitational wave bursts from the mergers of massive primordial black holes in clusters is calculated. Such clusters of black holes can be formed through phase transitions in the early Universe. The central black holes in clusters can serve as the seeds of supermassive black holes in galactic nuclei. The expected burst detection rate by the LISA gravitational wave detector is estimated.Comment: 10 pages, 2 figure
    • …
    corecore