133 research outputs found

    Jahn-Teller effect and Electron correlation in manganites

    Full text link
    Jahn-Teller (JT) effect both in the absence and presence of the strong Coulomb correlation is studied theoretically focusing on the reduction ΔK\Delta K of the kinetic energy gain which is directly related to the spin wave stiffness. Without the Coulomb interaction, the perturbative analysis gives ΔK/(g2/MΩ2)0.050.13\Delta K / (g^2/M\Omega^2) \cong 0.05-0.13 depending on the electron number [gg: electron-phonon(el-ph) coupling constant, MM: mass of the oxygen atom, Ω\Omega: frequency of the phonon]. Although there occurs many channels of the JT el-ph interaction in the multiband system, the final results of ΔK\Delta K roughly scales with the density of states at the Fermi energy. In the limit of strong electron correlation, the magnitude of the orbital polarization saturate and the relevant degrees of freedom are the direction (phase) of it. An effective action is derived for the phase variable including the effect of the JT interaction. In this limit, JT interaction is {\it{enhanced}} compared with the non-interacting case, and ΔK\Delta K is given by the lattice relaxation energy ELE_{L} for the localized electrons, although the electrons remains itinerant. Discussion on experiments are given based on these theoretical results.Comment: 24 pages, 7 figure

    Spin and orbital ordering in double-layered manganites

    Full text link
    We study theoretically the phase diagram of the double-layered perovskite manganites taking into account the orbital degeneracy, the strong Coulombic repulsion, and the coupling with the lattice deformation. Observed spin structural changes as the increased doping are explained in terms of the orbital ordering and the bond-length dependence of the hopping integral along cc-axis. Temperature dependence of the neutron diffraction peak corresponding to the canting structure is also explained. Comparison with the 3D cubic system is made.Comment: 7 figure

    Complex orbital state in manganites

    Full text link
    The ege_g-orbital states with complex coefficients of the linear combination of x2y2x^2-y^2 and 3z2r23z^2-r^2 are studied for the ferromagnetic state in doped manganites. Especially the focus is put on the competition among uniform complex, staggered complex, and real orbital states. As the hole-doping xx increases, the real, the canted complex, and the staggered complex orbital states appears successively. Uniform complex state analoguous to Nagaoka ferromagnet does not appear. These complex states can be expressed as a resonating state among the planer orbitals as the orbital liquid, accompanied by no Jahn-Teller distortion.Comment: 14 pages, 6 figure

    Ultrafast Photoinduced Formation of Metallic State in a Perovskite-type Manganite with Short Range Charge and Orbital Order

    Full text link
    Femtosecond reflection spectroscopy was performed on a perovskite-type manganite, Gd0.55Sr0.45MnO3, with the short-range charge and orbital order (CO/OO). Immediately after the photoirradiation, a large increase of the reflectivity was detected in the mid-infrared region. The optical conductivity spectrum under photoirradiation obtained from the Kramers-Kronig analyses of the reflectivity changes demonstrates a formation of a metallic state. This suggests that ferromagnetic spin arrangements occur within the time resolution (ca. 200 fs) through the double exchange interaction, resulting in an ultrafast CO/OO to FM switching.Comment: 4 figure

    Phase diagram of a generalized Hubbard model applied to orbital order in manganites

    Full text link
    The magnetic phase diagram of a two-dimensional generalized Hubbard model proposed for manganites is studied within Hartree-Fock approximation. In this model the hopping matrix includes anisotropic diagonal hopping matrix elements as well as off-diagonal elements. The antiferromagnetic (AF), ferromagnetic (F), canted (C) and paramagnetic (P) states are included in the analysis as possible phases. It is found that away from half-filling only the canted and F states may exist and AF and P states which are possible for the usual Hubbard model do not appear. This is because the F order has already developed for on-site repulsion U=0 due to the hopping matrix of the generalized model. When applied for manganites the orbital degree is described by a pseudospin. Thus our ``magnetic'' phase diagram obtained physically describes how orbital order changes with UU and with doping for manganites. Part of our results are consistent with other numerical calculations and some experiments.Comment: 5 eps figures; a note added, to appear in Phys. Rev.

    Relative contributions of lattice distortion and orbital ordering to resonant x-ray scattering in manganites

    Full text link
    We investigated the origin of the energy splitting observed in the resonant x-ray scattering (RXS) in manganites. Using thin film samples with controlled lattice parameters and orbital states at a fixed orbital filling, we estimated that the contribution of the interatomic Coulomb interaction relative to the Jahn-Teller mechanism is insignificant and at most 0.27. This indicates that RXS probes mainly Jahn-Teller distortion in manganites.Comment: 8 pages, 4 figure

    Magnetic Phases of Electron-Doped Manganites

    Full text link
    We study the anisotropic magnetic structures exhibited by electron-doped manganites using a model which incorporates the double-exchange between orbital ly degenerate ege_{g} electrons and the super-exchange between t2gt_{2g} electrons with realistic values of the Hund's coupling(JHJ_H), the super-exchange coupling(JAFJ_{AF}), and the bandwidth(WW). We look at the relative stabilities of the G, C and A type antiferromagnetic ph ases. In particular we find that the G-phase is stable for low electron doping as seen in experiments. We find good agreement with the experimentally observed magnetic phase diagrams of electron-doped manganites (x>0.5x > 0.5) such as Nd1x_{1-x}Srx_{x}MnO3_{3}, Pr1x_{1-x}Srx_{x}MnO3_{3}, and Sm1x_{1-x}Cax_{x}MnO3_{3}. We can also explain the experimentally observed orbital structures of the C a nd A phases. We also extend our calculation for electron-doped bilayer manganites of the form R22x_{2-2x}A1+2x_{1+2x}Mn2_2O7_7 and predict that the C-phase will be absent in t hese systems due to their reduced dimensionality.Comment: 7 .ps files included. To appear in Phys. Rev. B (Feb 2001

    Phase Transition in Perovskite Manganites with Orbital Degree of Freedom

    Full text link
    Roles of orbital degree of freedom of Mn ions in phase transition as a function of temperature and hole concentration in perovskite manganites are studied. It is shown that the orbital order-disorder transition is of the first order in the wide region of hole concentration and the Neˊ\rm \acute{e}el temperature for the anisotropic spin ordering, such as the layer-type antiferromagnetic one, is lower than the orbital ordering temperature due to the anisotropy in the orbital space. The calculated results of the temperature dependence of the spin and orbital order parameters explain a variety of the experiments observed in manganites.Comment: 10 pages, 5 figure

    Orbital Structure and Magnetic Ordering in Layered Manganites: Universal Correlation and Its Mechanism

    Full text link
    Correlation between orbital structure and magnetic ordering in bilayered manganites is examined. A level separation between the 3d3z2r23d_{3z^2-r^2} and 3dx2y23d_{x^2-y^2} orbitals in a Mn ion is calculated in the ionic model for a large number of the compounds. It is found that the relative stability of the orbitals dominates the magnetic transition temperatures as well as the magnetic structures. A mechanism of the correlation between orbital and magnetism is investigated based on the theoretical model with the two ege_g orbitals under strong electron correlation.Comment: 4 pages, 4 figure

    Structural, magnetic and electrical properties of single crystalline La_(1-x)Sr_xMnO_3 for 0.4 < x < 0.85

    Full text link
    We report on structural, magnetic and electrical properties of Sr-doped LaMnO_3 single crystals for doping levels 0.4 < x < 0.85. The complex structural and magnetic phase diagram can only be explained assuming significant contributions from the orbital degrees of freedom. Close to x = 0.6 a ferromagnetic metal is followed by an antiferromagnetic metallic phase below 200 K. This antiferromagnetic metallic phase exists in a monoclinic crystallographic structure. Following theoretical predictions this metallic antiferromagnet is expected to reveal an (x^2-y^2)-type orbital order. For higher Sr concentrations an antiferromagnetic insulator is established below room temperature.Comment: 8 pages, 7 figure
    corecore