6,951 research outputs found

    Lasing in circuit quantum electrodynamics with strong noise

    Full text link
    We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cut-off frequency, a structured environment peaked at a specific frequency and 1/f-noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear

    Broadband squeezed light from phase-locked single-mode sub-Poissonian lasers

    Full text link
    We consider sub-Poissonian single-mode laser with external synchronization and analyze its applicability to the problems of quantum information. Using Heisenberg-Langevin theory we calculate the quadrature variances of the field emitted by this laser. It is shown that such systems can demonstrate strong quadrature squeezing. Taking into account that the emitted field is temporally multi-mode the application of such sources to multichannel quantum teleportation and dense coding protocols is discussed.Comment: 14 pages, 7 figure

    Quantal Brownian Motion - Dephasing and Dissipation

    Full text link
    We analyze quantal Brownian motion in dd dimensions using the unified model for diffusion localization and dissipation, and Feynman-Vernon formalism. At high temperatures the propagator possess a Markovian property and we can write down an equivalent Master equation. Unlike the case of the Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest themselves due to the disordered nature of the environment. Using Wigner picture of the dynamics we distinguish between two different mechanisms for destruction of coherence. The analysis of dephasing is extended to the low temperature regime by using a semiclassical strategy. Various results are derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion. We also analyze loss of coherence at the limit of zero temperature and clarify the limitations of the semiclassical approach. The condition for having coherent effect due to scattering by low-frequency fluctuations is also pointed out. It is interesting that the dephasing rate can be either larger or smaller than the dissipation rate, depending on the physical circumstances.Comment: LaTex, 23 pages, 4 figures, published vesio

    Irreversibility on the Level of Single-Electron Tunneling

    Get PDF
    We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with the theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the charge detection is taken into account

    Statistics of voltage fluctuations in resistively shunted Josephson junctions

    Full text link
    The intrinsic nonlinearity of Josephson junctions converts Gaussian current noise in the input into non-Gaussian voltage noise in the output. For a resistively shunted Josephson junction with white input noise we determine numerically exactly the properties of the few lowest cumulants of the voltage fluctuations, and we derive analytical expressions for these cumulants in several important limits. The statistics of the voltage fluctuations is found to be Gaussian at bias currents well above the Josephson critical current, but Poissonian at currents below the critical value. In the transition region close to the critical current the higher-order cumulants oscillate and the voltage noise is strongly non-Gaussian. For coloured input noise we determine the third cumulant of the voltage.Comment: 9 pages, 5 figure

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Laser theory in manifest Lindblad form

    Full text link
    We discuss the laser theory for a single-mode laser with nonlinear gain. We focus in particular on a micromaser which is pumped with a dilute beam of excited atoms crossing the laser cavity. In the weak-coupling regime, an expansion in the coupling strength is developed that preserves the Lindblad form of the master equation, securing the positivity of the density matrix. This expansion breaks rapidly down above threshold. This can be improved with an alternative approach, not restricted to weak coupling: the Lindblad operators are expanded in orthogonal polynomials adapted to the probability distribution for the atom-laser interaction time. Results for the photon statistics and the laser linewidth illustrate the theory.Comment: 13 pages, 8 figures, to be published in J Phys B (minor revision
    corecore